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Abstract— Effective communication between humans often
embeds both temporal and spatial context. While spatial context
captures the geographic settings of objects in the environment,
temporal context describes their changes over time. In this
paper, we propose femporal spatial inverse semantics (TeSIS) to
extend the inverse semantics approach to also consider the tem-
poral context for robots communicating with humans. Inverse
semantics generates natural language requests while taking into
account how well the human listeners would interpret those
requests given the current spatial context. Compared to inverse
semantics, our approach incorporates also temporal context by
referring to spatial context information in the past.

To achieve this, we extend the sentence structure in inverse
semantics to generate sentences that can refer to not only the
current but also previous states of the environment. A new
metric based on the extended sentence structure is developed by
breaking a single sentence into multiple independent sentences
that refer to environment states at different times. Using this
approach, we are able to generate sentences such as “Please
pick up the cup beside the oven that was on the dining table”. To
evaluate our approach, we randomly generate scenarios in an
experimental domain. Each scenario includes the description
of the current and several immediate previous states. Natural
language sentences are then generated for these scenarios using
both inverse semantics that uses only the spatial context and
our approach. Amazon MTurk is used to compare the sentences
generated and results show that TeSIS achieves better accuracy,
sometimes by a significant margin, than the baseline.

I. INTRODUCTION

Over the past few decades, we have seen robots grad-
vally enter our lives, and they will undoubtedly continue
to play a more and more important role in the future.
Robots can provide assistance to humans in many areas,
such as in household, industrial and medical applications.
To improve efficiency and maintain safety during human-
robot interaction, it is important for humans and robots to
communicate with each other in an effective manner. While
communication between humans are carried out naturally
since we share a similar understanding of the world, the
mismatch between humans and robots can be profound,
and thus renders human-robot communication a significant
challenge. For example, in natural language communication,
the symbol grounding problem is related to the problem
of how words get their meanings. An effective grounding
process often embeds important context information to make
communication more interpretable. However, differences in
the understanding of the environment between humans and
robots create a significant barrier for using such context
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information during communication. For example, a robot can
easily refer to an object using its precise physical location,
which however would be difficult for humans to understand.

In this paper, we focus on enabling robots to communicate
information to humans using natural language sentences, or
also known as the inverse symbol grounding problem. This
is useful, for example, when robots need to request help
from humans while performing a task, or convey specific
information to them. In such situations, robots must gener-
ate natural language sentences that accurately communicate
information to their human partners. Our research focus here
is to enable robots to generate easily interpretable natural
language sentences with context information.

The context information in natural language communi-
cation can be both spatial and temporal, which captures
geographic settings of objects and their changes over time.
For example, consider a warehouse like environment where
a robot is helping a human with packing and shipping boxes.
Everything is going on well until the robot hands over the
human a box that has one item missing. The human is aware
of the situation, adds the required item, and puts the box
down on a table along with other boxes that are being packed.
However, when the table is too full which makes it difficult
for the robot to access the read-to-ship box, the robot must
request help. Since there are other boxes on the table, the
robot may use spatial context to specify which box it needs
by asking “Please hand me the red box that is on the right
side of the table”. However, when the boxes are difficult to
disambiguate using only the spatial context, it may be helpful
to use the temporal context by asking “Please hand me the
box on the table that was just handed over to you”.

Tellex et al. [21] first introduced an approach called
inverse semantics to address the inverse grounding problem
for robots making requests to humans. Inverse grounding is
considered within a grounding framework by simultaneously
taking into account how well human listeners would interpret
such requests given the current spatial context. First, to
facilitate the understanding of natural language sentences for
humans, the robot builds a mapping from words or phrases
in a sentence to groundings in the environment. To enable
robots to generate sentences, inverse semantics inverts this
process by mapping from groundings in the environment to
words or phrases that constitute sentences. One complexity in
sentence generation is that instead of optimizing according to
the human as a “speaker” (uttering commands to the robot),
this inverse process must be optimized now for the human as
a “listener” by reducing ambiguity in the communication. In
simple scenarios, this approach can generate more accurate



requests by extending sentences to include descriptive infor-
mation about the spatial context. When the situation becomes
more complicated, as we discussed, relying solely on spatial
context becomes insufficient. We propose an approach called
temporal spatial inverse semantics (1eSIS) that incorporates
both spatial and temporal information that allows reference to
spatial information in the past. Temporal context information
is used whenever it helps resolve ambiguities, and thus TeSIS
is expected to generate more interpretable sentences.

In this paper, we develop TeSIS to extend inverse seman-
tics to incorporate temporal context for robots communicat-
ing with humans. First, we modify the context-free grammar
(CFG) to generate sentences that can refer to both the current
and previous environment states. A new metric is developed
by breaking a single sentence into multiple independent sen-
tences that map to environment states at different times. To
evaluate our approach, we generate scenarios in a simulated
experiment domain. Natural language requests are generated
using inverse semantics and TeSIS. The generated sentences
are evaluated on Amazon MTurk. Results show that TeSIS
largely improves the accuracy of human performance for
interpreting robot requests in a human-robot teaming setting.

II. RELATED WORK

Much research has been done for human-robot interaction
using natural languages. For robots, this ability requires them
to both understand natural language sentences [17], [18], [2],
[22], [19] and be able to generate them [14], [20], [8], [16],
[13]. Inverse semantics [21] used a probabilistic framework
to model the process of natural language understanding
[22] as an inference problem, and then invert this process
for generating linguistic expressions. During the generation
process, instead of choosing the sentence that best matches
with the semantics, it selects the one that minimizes the
ambiguity for humans by minimizing the uncertainty in the
human understanding model. Our approach follows a similar
process to facilitate human understanding of the sentence.
The difference is that our approach generates sentences that
also incorporate temporal context information from previous
states, and hence can resolve ambiguities that cannot be
easily addressed using only spatial context.

One of the important insights from [21] is that language
understanding and generation are not two symmetrical pro-
cesses [21]. In particular, in one direction, language under-
standing only needs to consider the most likely underlying
semantics that a sentence is mapped to; in the other direction,
however, language generation must not only consider how
likely they are mapped, but also how likely they may be
mis-mapped, in order to facilitate human understanding of
the sentence. Such asymmetry not only exists in human-robot
communication but also in many different research areas that
involve human-robot interaction [11], such as robot motion
planning [7], task planning [26], [6], learning and adaption
[12], [3], and in general all aspects of robots decision making
with humans in the loop [4]. To be seen as cooperative
in such applications, robots are tasked with the additional
burden to reduce human effort (usually at the cost of extra
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Fig. 1: A scenario in our experiment domain showing two
contiguous time steps. This domain involves a robotic forklift
and a human-operated forklift (not shown for clarity) to
cooperatively load and unload pallets. The bottom part of
this figure presents the four kinds of objects in this domain.
The target object that the robot needs help with is marked in
a red circle. (a) Environment state of the previous time step.
(b) Environment state of the current time step.

robot effort), whether physical or cognitive, via implicit [15]
or explicit ways [10], [5].

III. TEMPORAL SPATIAL INVERSE SEMANTICS

In this section, we describe our approach to temporal
spatial inverse semantics, which extends inverse semantics
[21] by incorporating temporal context information. First,
we present our experiment domain, similar to that used
in [21], which is also referred to throughout this section
as a motivating scenario. Then, after a brief background
discussion of inverse semantics, we introduce our extension.

A. Experiment Domain

Our experiment domain involves a robotic forklift and a
human-operated forklift working together to load and unload
pallets. Let us consider a scenario shown in Fig. 1, where
there are two types of pallets, tire and box pallets. The tire
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(a) G generated by inverse semantics [21] for “Pick up the
tire pallet (that is) next to the box pallet”. The substructure in
the blue bounding box is the extended part for spatial context.
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(b) G generated by temporal spatial inverse semantics (TeSIS) for “Pick up the
tire pallet (that is) next to the box pallet (which) was behind the trailer”. The first
extended substructure in the blue bounding box maps phrases to groundings in the

current time step 7. The second extended substructure in the red bounding box maps
phrases to groundings in the previous time step 7 — 1.

Fig. 2: Examples of Generalized Grounding Graphs for inverse semantics [21] and our approach (temporal spatial inverse
semantics). Y represents groundings in the environment. A; indicates constituent phrases from natural language commands.
¢; is a correspondence factor indicating the correctness of the mapping between groundings and constituent phrases.

pallet marked in a red circle is the target that the robot needs
help with. Fig. 1a presents the state immediately before the
current state; Fig. 1b presents the current state. For clarity,
we are only showing the robotic forklift in the pictures.
This scenario is difficult since the target tire pallet is located
among other tire and box pallets. In this case, the sentence
generated by inverse semantics that considers only spatial
context may be “(Please help me) Pick up the tire pallet
that is next to the box pallets”. However, such an expression
would be ambiguous for a human partner since there are
two tire pallets next to the box pallets in the environment.
While a more complex sentence may work, the sentence
has to be meticulously structured in situations like this and
thus becomes a challenge to understand. However, using
temporal context can help immensely in this situation while
keeping a simple sentence structure such as “(Please help
me) Pick up the tire pallet that was behind the trailer”. Thus,
incorporating temporal context information from previous
states can help reduce ambiguity and keep the sentence
concise.

B. Generalized Grounding Graphs

Both inverse semantics and our temporal spatial inverse
semantics (TeSIS) involve mapping between natural language
phrases and groundings in the environment. We use General-
ized Grounding Graphs (G?) proposed by Tellex et al. [22],
similar to that in inverse semantics. We will provide a short
introduction about G* in this section.

G? is proposed for solving the problem of natural language
understanding. Given a natural language command, such as
“Pick up the tire pallet”, the robot should be able to map the
constituent phrases to groundings in the environment, shown
in Fig. 2a. A grounding may be an object, place, or path
in the environment, or an action that the robot can perform.
Furthermore, a correspondence vector & is introduced for
each phrase-grounding mapping. Each correspondence factor
¢; € ® is used for indicating whether the mapping is right
or wrong. To build a G>, the natural language command is
first decomposed into Spatial Description Clauses or SDCs

introduced by Kollar et al. [16]. Then a G? is created
according to the structural hierarchy of SDCs. The goal of
natural language understanding for a sentence then becomes
finding the groundings that maximize the following condi-
tional probability:

argmax p(® = True|command,I") (1)
r

where I represents all possible groundings in the environ-
ment. In other words, the system searches for a set of
groundings that best match the command.

C. Inverse Semantics

Inverse semantics inverts the G* model to compute a
mapping from groundings to a natural language sentence.
For example, when the robot encounters a failure or an
unexpected situation, it would generate a request to its
human partner to help it restore to working condition and
continue its execution. To achieve this, after associating the
groundings of a desired action to a G® model, the system
searches for a sentence that would best convey the request
to the human based on the language understanding model. A
metric £ is used to estimate the quality of a generated natural
language sentence, which must be maximized:

argmax h(A,a,M) 2)
A

The environmental context M contains location, orientation
and path information of each object. a is the desired action
that the robot expects the human to help with. The aim
is to find an utterance A that maximizes & above. An
intuitive method to specify % is to consider a sentence that
corresponds to the groundings of the desired action without
considering other possible groundings of the sentence in
the environment. This however would work only in simple
environments. In more complex environments, it is bound
to lead to ambiguities. For example, when there are two
tire pallet in the environment, a request of “Pick up the tire
pallet” would fail to convey the intended meaning and lead
to confusion.
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VB — pick up | load | unload | drive forward
NP — the trailer | the forklift | the tire pallet
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Fig. 3: Part of the context-free grammar that generates the
search space for natural language sentences (commands) for
our experiment domain.

To address this problem, the key is to take the model
of the listener into consideration in the metric h. First,
the candidate sentence structure (based on the CFG for
generating natural language requests) is extended to allow
more context information to be incorporated into the request.
After generating the candidate sentences, all the possible
groundings are considered in the environment for each candi-
date. The probability that the human will correctly interpret
the requested action given a candidate sentence is measured
as follows:

T Eop (@A M)

where 7, denotes all grounding variables that are associated
with the desired action and ¥, the desired action groundings.
This h metric takes into account human interpretation of a
given natural language request by minimizing the uncertainty
in the distribution of groundings that are consistent with 7,
thus minimizing potential confusion due to other possible
groundings for the sentence.

3)

D. Temporal Spatial Inverse Semantics

By modeling both the listener and environment, inverse
semantics performs better than a baseline that just models the
environment (through the phrase-grounding mapping). The
approach is able to generate sentences like “Pick up the tire
pallet in front of the forklift” instead of simply “Pick up the
tire pallet”. However, as we mentioned, while this approach
works fine when the spatial context is sufficient to remove
ambiguity, it may fail to generate effective communication
in a complex environment that is rich of similar spatial
features, e.g., environments that contain multiple objects of
the same type such as a warehouse. In such cases, we need
a more powerful approach that can incorporate more context
information to help resolve ambiguity.

To achieve this, our system uses also the temporal context
by considering previous environment states when generating
natural language requests. Hence, we call our approach tem-
poral spatial inverse semantics (TeSIS). First, we extend the
CFG sentence generator for generating candidate sentences,
shown in Fig. 3. The extended structure allows references

to spatial context from both the current and previous states.
The generated candidates are then fit into a G* model. Fig. 2a
shows an example of a G* graph for inverse semantics. Fig.
2b shows an example for 7eSIS for a model that considers
the current state and a previous state. There are two parts
in this graph. One part is for mappings between phrases
and groundings in the current time step (similar to inverse
semantics); the other part is the extended part for mappings
between phrases and groundings in the previous state.

A new metric &’ that incorporates the consideration of
context information from previous states (up to n) can be
specified as follows:

B (Mo Vs Mox) = p (Y6190, Aok, Mo,n) 4)

where 1, represents Y, = ¥, Y%, = Y. Yo, = ¥;» Which
correspond to references into the current and previous states

(indexed from 0 —k with O being the current state), re-
spectively. The robot will maintain the last n environment
states from the previous time steps. The extended sentence
structure (with k expanded substructures referring to the
previous states) of a new sentence maps constituent phrases
to groundings in k out of the n previous states. The action
grounding variables y,, in the current state correspond to
the desired action groundings 7. For previous time steps,
we track the target object that the robot expects the human
to perform the action on. We denote the grounding of this
object as ¥,, in the ith substructure and the desired grounding
value as ¥ (i.e., the target). Therefore, given the constituent
phrases and correspondence vectors of a sentence’s G* model
and all the context information required (i.e., about the
previous states), we can now compute the quality metric
h' that captures how a human would correctly interpret the
robot’s request as follows.

Out of the n previous environment states, there are Cfl
possible combinations using k previous states. We compute
a quality measure (the equation inside the summation in Eq.
(5) that captures the uncertainty in the correct mapping) for
each possible combination. Assuming that all combination
are equally likely, we then take their average as h'. In the
following, we refer to the set of all C,’; combinations as Si:

H (Ao, Y Mog) = P (%4 Pok Ao MCi) ()

Skl MCES},

where MC; represents the environment context that corre-
sponds to a combination of the current and previous k states.
For computing the quality measure for each combination,
we marginalize over values of all groundings from I’y to I’
(denoted as I'g z):

W (Ao k. Yy Mo)
1

s Y Y p(Toul®os, Ao, MCy)  (6)

MCeSy F(*)_k

where I, is used for representing I'o|Ya, = 7, I1[%, =
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Fig. 4: Search schema for temporal spatial inverse semantics
(TeSIS). At level 1, given the desired action groundings ¥,
we search over the predefined natural language corpus to find
the top m sentence candidates. At the second level, sentences
are extended by using the CFG sentence generator that allows
references to k selected previous environment states. At the
third level, we search over all the groundings from both the
previous and current environment states to find the sentence
with the highest value for /.

Yos s Lk|Yo, = ¥, Apply Bayes’ rule to factor the model:

1
W (Aok, Y Mog) = o=

s
)3

P (Po|Tok, Ao, MCi) p (Tok| Ao g, MCy)
MCres; Ty P (Po k| Ao, MCy)

)

Then we rewrite the denominator as the summation over all
the groundings from IT, to I':

) 1
B (Ao, Y Mox) = 7o
ISk

P (Po Lok, Ao, MCi) p (Lo x| Aok, MCy)

MCES T, Xy P (<I>o.kIF6,k,Ao7k,MCk) p (l"i),klek,MCk)
®

The summation in the denominator is for all the ground-
ings in the k selected environment states while the summa-
tion outside is for the action or object groundings in each
selected state. We therefore can move the summation to the
nominator:

N 1
h/ (AOJH Ya aM(),k) = To
|Sk|
Xry, P (@ox|Tok, Aok, MCr) p (To x| Aok, MCy)
wéiEs, ry, p (PoxlTh o Mox MCi) p (Th Aok MGy )
9

Similar to [21], we assume that I" and A are independent
when we do not know ®@. p (o x|Agk,MCy) then becomes a

constant and we can remove it from both the nominator and
denominator, which gives:

W (Ao, Y Mo)
1 Yoy, P (Pox|Tox, Aok, MCy)

ISkl méZs, Yr), P (¢O.k|r6’k7A0,k7MCk>

Here p (CIJO,k\FO,k,A()?k,MCk) is factorized as follows as the
multiplication of factor values in the entire G structure from
all the time steps we refer to:

1 .
P (@0l Ao MC) = - [T (9 20,3.M0) (1)

(10)

where Z is the normalization constant and M) is the environ-
mental state that the ith factor lies in. Equation (10) shows
the new evaluation metric &' for temporal spatial inverse
semantics. We compute the quality measure for each possible
combination of k previous environmental states and then take
the average of them to obtain the quality of the candidate
sentence. By generating different sentence structures that
may or may not refer to the previous states, temporal spatial
inverse semantics extends sentence structures to use temporal
context only when it helps with conveying the information.

The search process of generating natural language re-
quests for the robot in TeSIS, however, is computationally
expensive. Hence, heuristics are adopted to make it practical.
Greedy decisions are made at the three different levels,
respectively, for word & phrase selection, sentence structure
extension, and groundings exploration. The work flow of
TeSIS is shown in Fig. 4, where levels from top down,
respectively, correspond to word & phrase selection, structure
extension, and grounding exploration. At the first (top) level,
we first convert the desired action a to the corresponding
groundings ¥, which allows us to create a G> model for
Y;. Given the desired groundings and the G* structure, we
search over the predefined corpus of natural language words
and phrases to find the top m candidate sentences. Next
we extend the structure of candidate sentences from level
1 (top level in Fig. 4) by the CFG shown in Fig. 3. This
extension includes extending substructures for all k previous
environment states. At the last level, all the groundings
from the k previous environment states and current state are
explored for computing the value of 4. At each level, only
selected candidates are passed to the next level. This greedy
search process significantly reduces the number of sentences
and groundings to be considered.

IV. EVALUATION

We evaluate our approach in the forklift domain that was
adapted from the one used in [22]. For a given scenario, the
robotic forklift would be executing actions following a given
plan. During its plan execution, it may encounter unexpected
situations such that the execution has to stop. We consider
unexpected situations as prerequisites that must be met and
however cannot be performed by the robot. In such cases, the
robot must generate requests to solicit help from the human
who is also operating a forklift nearby.



(a) Scene at time T-3

(b) Scene at time T-2

(c) Scene at time T-1
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Fig. 5: Test scenario with the current time step and three previous time steps. The target object is in the red circle. Generated
requests: (1) G* inverse semantics: “Pick up (the) tire pallet to the right of (the) forklift’; (2) G> temporal spatial inverse
semantics with k = 2 and n = 3: “Pick up (the) tire pallet which was in front of (a) trailer”’; (3) G temporal spatial inverse
semantics with k =1 and n = 3: “Pick up (the) tire pallet which was in front of (a) trailer.”

A. Training and Testing

We adapted the dataset from [1] for training and testing
in a forklift domain for manipulation and navigation. There
are 22 different scenarios that include loading, unloading and
moving from one location to another location. Each scenario
contains 13 human written commands on average describing
actions the forklift performs. We trained the model of natural
language understanding following the same procedure as in
Tellex et al. [22].

For testing, we must first create scenarios that span across
multiple time steps. Given each scenario in the training
dataset, we first randomly select an object in the environ-
ment, and modify its grounding information, such as its
location and orientation, to create an environment state for
the previous time step. To obtain environment states for
multiple previous time steps, we follow the same procedure
iteratively. Meanwhile we check the generation process to
avoid collision among objects. We created 83 test scenarios.
Each one contains 4 environment states in total, including
the current state (i.e., 3 previous states).

B. Evaluation and Discussion

To evaluate our system, we use Amazon MTurk (AMT).
First, for each test scenario, we create a scene in the simu-
lator as in Fig. 1 for each environment state. Each scenario

involves two trailers, five pallets with two different types
(see 1). We present the workers on AMT all the 4 scenes in
order with a generated natural language request together. The
turkers are asked to choose from multiple choices the object
that the request refers to. This provides a direct measurement
for how accurate the generated requests are interpreted.

We experiment with three experiment settings. One of the
settings uses inverse semantics that considers only spatial
context, the other two settings both use temporal spatial
inverse semantics, one with k =2 and n = 3, and the other
with k =1 and n = 3. The aim here is to also shed light
on how much temporal context humans are accustomed to.
Table I presents the results for all the three settings; each
setting used 100 turkers; each turker responded to about 30
scenarios. Both settings that use temporal spatial inverse
semantics perform better than inverse semantics. In some
scenarios where spatial context can be used to disambiguate
well, inverse semantics with S, does a pretty good job. For
example, when the box pallet that is referred to is exactly
located to the left of the trailer and all the other pallets are
on the other side of the trailer. Nevertheless, generally, we
can see that these scenarios are already getting difficult for
inverse semantics that uses only spatial context.

Sometimes, obviously ambiguous spatial description may
be used by inverse semantics. One example that we observed



(a) Scene at time T-3

(b) Scene at time T-2

(c) Scene at time T-1
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Fig. 6: Test scenario with the current time step and three previous time steps. The target object is marked in the red circle.
Generated requests: (1) G* inverse semantics: “Pick up (the) tire pallet in front of (the) box pallet”; (2) G temporal spatial
inverse semantics with k =2 and n = 3: “Pick up (the) tire pallet which was to the left of (a) trailer (and had been) in front
of (the) trailer”; (3) G° temporal spatial inverse semantics with k = 1 and n = 3: “Pick up (the) tire pallet which was in

front of (a) trailer”.

from the test scenarios is shown in Fig. 5. In the current state,
the target tire pallet is located among other pallets. The top 1
sentence generated by inverse semantics is “Pick up (the) tire
pallet to the right of forklift”. This however is likely to cause
much confusion. In contrast, observing the three previous
states, we can see that the target tire pallet was in front of
the trailer on the right. In such cases, incorporating temporal
context information from previous time steps would helps
immensely to avoid such ambiguity. Indeed, the top sentence
generated by both temporal spatial inverse semantics settings
are “Pick up (the) tire pallet which was in front of (a) trailer”
For temporal spatial inverse semantics with k = 2, the two
extended substructures that correspond to the two previous
state may be mapped to the exact same constituent phrases.
In such case, we trim the sentences to include only one
extended substructure to avoid the repetition.

Comparison between the two settings using temporal
spatial inverse semantics shows that generating sentences
by referring to only one previous state out of multiple
available states seems to perform better than referring to
multiple previous states. This result may be explained in
multiple different ways. First, consider the implications of
adding temporal context. To take advantage of the previous
state information, we compute the quality measures for each

k combination given the extended sentence and its corre-
sponding G* structure. Then, the top sentence is selected
by picking the highest value of A’ which is computed as
the average of these quality measures. When k = 1, we will
compute the quality measure given each previous state that
may be selected one by one, and then return the value of 4’
and select the top sentence. For k =2, we must consider all
the combinations of the different previous two time steps
that may be selected. Given that heuristics are used, the
more complex the inference problem is, the most likely that
inaccuracy may be introduced.

One example for illustrating this effect is presented in
Fig. 6. Similar to the test scenario shown in Fig. 5, the
target tire pallet is located among other pallets in the current
state and it was in front of the trailer on the right in the
previous states. The top sentence generated by femporal
spatial inverse semantics with k =2 is “Pick up (the) tire
pallet which was to the left of (a) trailer (and had been) in
front of (the) trailer”, and with k =1 “Pick up the tire pallet
which was in front of trailer”. Both settings successfully
capture the temporal context in the previous time steps which
specify that the tire pallet was in front of the right trailer.
The sentence generated when k = 2, however, includes a
somewhat confusing description in the extended substructure



TABLE I: Comparison of the Successful Interpretation Rates
of the Generated Requests

Metric % Success
G’ inverse semantics 56.25
G° temporal spatial inverse semantics with k =2 and n =3 58.33
G° temporal spatial inverse semantics with k=1 and n =3 66.67

that refers to a second previous state. Of course, another
simpler explanation is that humans prefer shorter sentences
than longer sentences.

V. CONCLUSION

In this paper, we introduce an approach called temporal
spatial inverse semantics (TeSIS) for generating unambiguous
natural language sentences for robots communicating with
humans. Rather than only using spatial context, we also take
into account temporal context by considering environment
states from previous time steps to further help resolve ambi-
guities. First, we extend the sentence structure specified as a
CFG to allow references to the previous states. A new metric
based on the extended sentence structures is developed that
breaks a single sentence to multiple independent sentences
that can be inferred separately. In such a way, our approach
generates sentences that can capture context information
in the past whenever it helps convey the information. Our
evaluation demonstrates promising performance of TeSIS
for generating unambiguous requests for human partners to
understand.

Although TeSIS presents promising results, occasionally,
when even the combination of spatial and temporal context
is insufficient, generating requests would become very chal-
lenging. In such cases we can use an interactive approach
with humans in the loop as in [24], by engaging in a
dialog based conversation to resolve ambiguities as in [23].
However, such communication has a high requirement of
human cognition. Alternatively, it is also possible to study
multi-modal communication to generate natural language,
gesture, visual, and other communication cues [9] at the same
time. We also plan to use TeSIS for generating signaling
[10] in human-robot interaction. This will be combined with
our approaches to generating explicable plans [26], [25] and
explanations [5], [4] to faciliate fluent human-robot teaming.
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