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Abstract—There is a growing interest in achieving explainable
robotics during human-robot interaction. However, existing work
either focuses on modulating robot plans to make them more
explicable, or uses explanations at the cost of increased human
cognitive load. Prior work on generating explanations often
requires updates to human domain knowledge. However, such
work idealized both human memory capacity for updating
knowledge and cognitive capacity for reasoning with the new
knowledge. Inspired by psychological studies of human cognitive
load, we aim at not changing human domain knowledge, which
represents long-term memory that is difficult to update, and
instead consider explanation generation as an inverse planning
problem to search for a new goal that covers the original goal
while resulting in an explicable plan. The new goal is then used
as an explanation to the human observer. While our method
for explanation generation is motivated by minimizing human
cognitive load, it may also be used to hide private information
from other agents, which can be useful in non-collaborative or
adversarial settings. We introduce the problem formulation and
illustrate the idea with a few examples.

I. INTRODUCTION

As AI becomes ubiquitous, there is a growing interest in
achieving explainable robotics during human-robot interaction.
An important research topic along this direction is to enable
the robot to demonstrate explainable behaviors, which often re-
quires the robot to deviate from the optimal plans, and instead
chooses plans that are more explicable to the human. When
such plans are too costly to the robot, the robot is expected
to explain its behavior. Prior work [1] formulates explanation
generation as updates to the human’s mental model of the
robot DH (i.e., an approximation of the robot domain model
DR), so that the robot’s behavior becomes explicable to the
human in this updated model. In particular, the problem of
explanation generation is formulated as a model reconciliation
problem, which aims at making changes to the human’s
mental model of the robot to bring it closer to the robot’s
domain model. Sreedharan et al. [2] extends the formulation
to a hierarchical setting, and considers explanations in the
framework of counterfactual reasoning, where propositions are
searched to explain a foil that leads to a failure in achieving
the goal.

Although these prior methods of explanation generation for
the purpose of updating the human’s mental domain DH will
theoretically work, one fatal issue is that the effectiveness
of requiring updates to human knowledge is unpredictable.
According to psychologic studies of human cognitive load [3],
humans use both short-term and long-term memories, with the

short-term memory being more volatile and changeable. How-
ever, the human’s knowledge about the environment including
other agents, such as our biases, falls more into the long-
term memory, which is more reluctant to change. It is easy to
change the human’s mental model of the robot in an algorithm
after making an explanation, but difficult in practice to ensure
that the update actually happens in one’s mind. This intuition
is also backed up by psychological studies. As shown in [3] for
example, when an adult is interacting with kids, even though
the adult can provide sound explanations to warn the kids of
dangerous situations, the kids can still make “mistakes” due
to the limited abilities to update their knowledge, when their
short-term memory limitation is reached.

A related issue that also affects the effectiveness of updating
DH is due to the limitation of the human’s computational
ability to reason with new knowledge. In contrast to a com-
puter program, new knowledge cannot be simply plugged in
and played with a human. It requires a long time to sink
into one’s mind, which involves a complex cognitive process
that analyzes, dissects, and merges it with exiting knowledge.
In the psychology literature, this computational limitation is
studied in the ability of cognitive learning [4]. In human-
robot teaming, more specifically, when a robot provides an
explanation to the human, due to the limitation of human
computational ability, the human may not be able to relate the
explanation to the robot’s behavior as the robot expects. That
is, even though the explanation can be forced into the human’s
mind, the robot’s behavior remains inexplicable although it
would be when assuming unlimited computational ability.

Just to conclude, providing explanations to update hu-
man’s knowledge relies on two unrealistic assumptions about
humans: 1) the ability to update their knowledge without
considering the short-term memory capacity and complexity of
explanations; 2) the ability to reason with the newly updated
knowledge base. In this work, we propose a new approach
to explanation generation that does not involve changing the
human’s long-term knowledge while minimizing changes to
the short-term memory, so that the problems aforementioned
can be alleviated or often avoided. In particular, we consider
explanation generation as an inverse planning problem to
search for a new goal that also covers the original goal while
also resulting in an explicable plan.

Next, we first provide more details about the related work
and formulate our problem. We then illustrate explanation
generation with a few examples and conclude afterwards.



II. RELATED WORK

Given the increased interest in achieving explainable
robotics, research has been conducted along the direction in
many areas, such as communication, motion planning and
high-level task planning. In particular, AI challenges in human-
robot cognitive teaming [5] have been surveyed from a task
planning perspective. Several interesting approaches have been
discussed there. For example, Zhang et al. [6] introduced
the notion of plan explicability and built a learning model
to compute it, which was then used by agents to generate
plans that are more explicable to humans. This approach
uses a similar principle as in this work, with the goal of
reducing human cognitive load. However, this approach in-
troduces additional constraints to planning and hence may not
always be feasible (since the plan may be too costly). We
show that our approach in fact generalizes plan explicability
with slight modifications to the formulation. When generating
explicable plans is infeasible, plan explanations as udpates
to the human’s knowledge can be considered as a model
reconciliation problem [1] [2]. As discussed, however, these
methods require strong assumptions that are unrealistic in
practice.

Instead of updating the human’s knowledge, our proposed
method for generating explanations updates the robot’s goal,
which can be seen as an inverse planning problem, such that
the original goal is covered by the new goal while resulting in
an explicable plan to human. While in planning, we compute
a plan to achieve a goal; in inverse planning, in contrast,
we search for a goal that maximizes the explicability of the
resulting plan. Our work also differs from plan recognition
since no observations are required.

III. METHODOLOGY

Our problem setting is the one where the robot is cohabiting
with humans and the robot has the ability to choose its own
goals (of course, with the ultimate goal to make human lives
betters, hopefully).

A. Background

A STRIPS planning problem is a tuple M = 〈D, I,G〉,
where D = 〈F,A〉 is the domain model, F is the set of
predicates, and A = {a} is a set of actions with preconditions,
add and delete effects: Pre(a) ⊆ F , Add(a) ⊆ F , and
Del(a) ⊆ F . I ⊆ F is the initial state, and G ⊆ F
is the goal state. A plan is a sequence of actions π =
(a1, a2, ..., an), where ∀iai ∈ A. The cost of a plan π is given
by C(π) =

∑
a∈π c(a), where c(a) is often a non-negative

value; C(π) = ∞ if π = ∅ (no plan exists). A solution
to a planning problem is a plan such that δD(I, π) � G,
where δD(·) is a transition function that transitions the state
I using π. An optimal solution set of a problem is denoted
as Π∗M = {π∗M |π∗M = argminπ[C(π) s.t. δD(I, π) � G]}.
A plan in the optimal solution set is called an optimal plan
π∗M ∈ Π∗M .

In human-robot teaming, we define a general explana-
tion generation setting by the tuple 〈MR,MH〉, where

MR = 〈DR, IR, GR〉 is the robot’s model, and MH =
〈DH , IH , GH〉 is the human’s mental model of the robot [1].
For simplicity, Π∗MR , Π∗MH are denoted as Π∗R, Π∗H , and the
same applies to π∗R, π∗H for π∗MR , π∗MH . Note that changes to
all components of M is considered equivalent in [1].

B. Problem Formulation

We first provide a general definition of explicability used in
our work, which is similar to that in [6]. Our approach does
not depend on how explicability is defined.

Definition 1. (Explicability) Given two planning problems
with the same initial state and goal state, MR = 〈DR, I, G〉
and MH = 〈DH , I, G〉, and a plan πR of MR, the expli-
cability of πR to the model MH is defined as ξ[πR:MH ] =
−minπ∗H [dist(πR, π

∗
H)], where dist(·), similar to that in [6],

computes the explicability distance between the two plans.

We refer to this definition as the Plan-to-Model Explica-
blility (PME). Note that there are a couple of properties of
the definition:
• PME is non-positive, ξmax = 0
• ξ[π∗R:MH ] = 0 if Π∗R ∩Π∗H 6= ∅
In plan explanations as model reconciliation [1] [2], an

explanation E is generated to update MH to be MH′ such
that 1) MH′ is closer to MR, and 2) ∃π∗H′ ∈ Π∗R.

Instead of changing everything in MH , we aim at generating
explanations as updating the goal G such that the new goal
G′ = argmaxG′ [ξ[πR′ :M

H′ ]] s.t. G \G′ = ∅
where MH′ = 〈DH , I, G′〉 and πR′ ∈ ΠR′ is a solution
for MR′ = 〈DR, I, G′〉. To understand this, we firstly take
a look at the optimization without the constraint. We expect
that a plan πR′ for the updated robot problem MR′ to be
completely explicable in the updated human model MH′ , that
is, ξ[πR′ :M

H′ ] = 0; if such a plan cannot be found, we search
for a plan that can maximize ξ[πR′ :M

H′ ]. At the same time,
the new goal should cover the original goal, G \ G′ = ∅.
Note that our formulation of explanation generation problem
captures the problem of generating explicable plans in [6]. At
the same time, we also allow the goal of the problem to be
changed. Compared to [1], we do not require the robot plan
to be optimal in the updated model.

C. Explanation Generation

Our explanation generation problem can be considered as
the problem of explicable goal augmentation. Given a set
of goal augmentation candidates or short as goal candidates,
denoted as G, which is a set of goal augmentations that the
robot may choose to perform. In order to achieve the original
goal, we consider the new goal as composed of the original
goal and an additional goal that is in the goal candidates.
That is, G′ ∈ {G ∪ 4G | 4G ∈ G}. Then our explanation
generation problem can be formulated as follows:
G′ = argmaxG′ [ξ[πR′ :M

H′ ]]

where G′ ∈ {G ∪ 4G | 4G ∈ G}, MH′ = 〈DH , I, G′〉,
and πR′ ∈ ΠR′ is a plan in MR′ = 〈DR, I, G′〉. Then the



new goal G′ can be used as the explanation–with the robot
explaining to the human about this new goal.

Algorithm 1 Explanation Generation as Invese Planning

1: E = dict()
2: for all 4G ∈ G do
3: G′ = G ∧4G . goal augmentation
4: MH′ = 〈DH , I, G′〉 . update MH′

5: MR′ = 〈DR, I, G′〉 . update MR′

6: for all πR′ ∈ ΠR′ do
7: ε = ξ[πR′ :M

H′ ]

8: if ε == ξmax then return G′

9: else
10: E [G′] = ε

return argmax(E)

The pseudocode of a native approach is presented in Algo-
rithm 1. In line 6, instead of finding all possible plans, we can
constrain to computing plans that are within a certain threshold
of the optimal plans using the Fast-Downward planner [7].
Heuristics for this search will be discussed in future work.

IV. EXAMPLES

A. Blocks World Exploration

A robot is exploring a block world shown in Figure 1(a).
The original goal G is to explore Cell3, G = Cell3. The
robot knows that there is a block in Cell2, while the hu-
man does not. In this case, π∗R = (GO4, GO5, GO6, GO3),
π∗H = (GO2, GO3), and ξ[πR:MH ] = −3. The candidate goals
may include T = {Cell1, Cell5, Cell7, Cell9}. When the
world is not observable to the human, generating explanations
such as Cell2 = Blocked may not be always desirable
as discussed. Instead, the robot searches for a new goal
such that the plan becomes explicable to the human. In this
example, the new goal that satisfies this requirement may be
G′ = Cell3 ∧ Cell5. Then, π∗R′ = (GO4, GO5, GO6, GO3),
π∗H′ = (GO4, GO5, GO6, GO3), and ξ[πR′ :MH′ ]

= 0. In this
case, the robot would explain to the human that its goal is to
explore Cell3 and Cell5 instead of telling the human about
its original goal Cell3. Note that the information about the
blockage of Cell2 is hidden.

B. House Chores

Some kids are watching TV programs in the living room
as shown in Figure 1(b). The robot has a goal to clean the
sofa on which the kids sit, G = Clean Sofa, and generates
an optimal plan, π∗R = {CLEAN SOFA}. However, the
kids want to stay on the sofa for the TV programs as
much as the robot wants to clean. So from their perspec-
tives, they want the robot to wait and then clean the sofa,
Π∗H = {WAIT,CLEAN SOFA}. Even though the robot
can generate the same plan as the kids wish, the waiting time
is uncertain so that it may cause a significant cost (due to other
tasks assigned). In this case, instead of providing explanations
to persuade the kids to leave the sofa, the robot finds a new

(a) Block World (b) House Chores

Fig. 1: (a) A robot represented by the purple triangle is
exploring the block world, where blocks are marked as blue.
(b) There are kids watching TV programs in the living room,
ROOMA. A robot represented by the purple triangle is in the
kitchen, ROOMB .

goal, G′ = Make Cake∧Clean Sofa and a corresponding
optimal plan π∗R′ = {MAKE CAKE,CLEAN SOFA},
since making a cake will lure the kids to stay in the kitchen
for the cake, while the robot can clean the sofa. Also, this
plan is explicable to the kids, ξ[π∗

R′ :MH′ ]
= 0. Note that this

scenario requires the robot to maintain a model of the kids.

V. DISCUSSION

Based on the principle of minimally changing the human’s
knowledge to reduce the cognitive load, we proposed to
generate explanations as explicable goal augmentations that
result in explicable plans to a human while achieving the
original goal at the same time. Although as an approach to
explanation generation, it may also be used as a method to
“hide” information from certain groups of people. This can
be useful for non-collaborative or adversarial situations where
information is considered private. Future work would also
include providing heuristics to search for the new goal faster.
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