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Abstract—In this paper, we consider a first step to bridge a
gap in coordinating task planning robots. Specifically, we study
the automatic construction of languages that are maximally
flexible while being sufficiently explicative for coordination. To
this end, we view language as a machinery for specifying
temporal-state constraints of plans. Such a view enables us to
reverse-engineer a language from the ground up by mapping
these composable constraints to words. Our language expresses a
plan for any given task as a “plan sketch” to convey just-enough
details while maximizing the flexibility to realize it, leading to
robust coordination with optimality guarantees among other
benefits. We formulate and analyze the problem, provide ap-
proximate solutions, and validate our approach under various
scenarios to shed light on its applications.

I. INTRODUCTION

To facilitate explicit coordination via communication be-
tween robots in distributed systems, a key consideration is the
adoption of a “language” that the robots can all speak. Such a
language often relies on words with predefined meanings that
are designed by human users [1], [2], [3], [4]. However, such
languages tend to be either too rigid or too forgiving, leading
to brittle solutions, excess negotiation costs, or unexpected
coordination issues (e.g., deadlocks). In this paper, as a first
step, we consider to bridge the gap for task planning robots
using symbolic planning. Traditional methods for explicit
coordination via communication in distributed systems with
planning agents can be divided into two classes:

1) Centralized plan and distributed execution: provides
optimality guarantees except when approximate solutions are
considered [5], [6], [7]. Note that the planning process may
be centralized or distributed [6]. Explicit coordination in
this class involves broadcasting the centralized plan in the
planning language and sometimes exchanging messages as
stipulated by the plan during plan execution. This approach
results in brittle solutions (i.e., a single agent changing its
part of plan requires the entire plan to be updated) among
other limitations.

2) Distributed plans and distributed execution: provides
no guarantee of optimality in general [8], [9]. Note that
distributed plans imply that the planning process is dis-
tributed. Methods in this class are often rule or local-search
based [10], [11], making them adaptive to local changes
and easy to implement. For example, [12] addressed similar
coordination problems via replanning and social rules (such
as waiting). For explicit coordination, a language is often
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Fig. 1: Motivating scenario involving two navigational robots.

designed manually on a case-by-case basis, which is prone
to unexpected coordination issues (e.g., deadlocks).

Our work serves as a middle ground that bridges the
two classes and combines their advantages, contributing
a novel perspective for explicit coordination between task
planning agents. Consider the navigation scenario in Fig. 1
that involves two robots, R; and Rs, in a gridworld. Each cell
can only accommodate a single robot at a time and the darker
cells are obstacles. The robots are tasked to reach their goal
locations (G and Gs), respectively, in the shortest timespan
while avoiding collisions. They have a limited sensing range
and communication is costly. During plan execution, there
may be locations of interest popping up at random places
that require either one of the robots to visit (denoted by the
eye sign). Even without considering the locations of interest,
the problem is difficult for the second class of methods: the
robots must coordinate before one of them enters the narrow
pathway so methods based on local information only would
not work well (i.e., leading to deadlocks). With changing
task configuration and unpredictable locations of interest,
neither would be assigning fixed priorities to the robots (e.g.,
always letting R; go through first). While these issues are
not present in the first class where the robots must coordinate
a plan before execution, whenever some location of interest
pops up, the robots must re-coordinate a plan, significantly
increasing the communication and coordination cost.

While similar to the first class, robots in our approach
coordinate by communicating “plan sketches” that guarantee
optimality while maximizing flexibility to reduce the need
for replanning and re-coordination (thus differing from work
on replanning or plan repair for making replanning more
efficient [13]). In the scenario above, the robots can com-
municate that “Ry to wait for R;” without specifying the
exact plan to be followed, so that robot R, later (instead
of R; even though R; would detect the location of interest
first, since that would require R; to wait for Rs) can adjust
locally to visit the location of interest even if its original plan
does not pass through it. A crucial property is to enable each



robot to make local changes without any negative impact to
the (global) makespan as long as the updated plan is still
consistent with the plan sketch.

To this end, we view language as a machinery for specify-
ing plan constraints. A language thus specifies a plan space
abstraction where a sentence in the language (i.e., a plan
sketch) specifies a set of plans. The robots all commit to the
same set of plans as a result of coordination (i.e., one robot
communicates a plan sketch to the others). To guarantee the
feasibility of this approach, given that the robots may be
unaware of the local changes made by the others, one of key
challenges is for the plans in this set to not introduce mis-
coordinations; to maximize flexibility, the number of plans
should be maximized. Since different sets will be specified
for different tasks, we instead minimize the number of words
in the language, resulting in a minimal language, referred
to as a minimal Agent Coordination Language (ACoL).
In our approach, we associate words in the language with
temporal-state constraints that are composable. We show that
searching for a minimal language is NEXP-complete. In light
of this result, we develop two approximate solutions: the first
solution guarantees the prevention of miscoordinations while
the second solution is tractable and provides more flexibility
at the cost of such a guarantee. Finally, we validate the
benefits of the languages under various application scenarios.
Hence, our contribution is both theoretical and practical in
nature (with a 2-page version appeared earlier [14]).

II. RELATED WORK

The emergence and evolution of language has been stud-
ied extensively in evolutionary and computational linguis-
tics [15], [16], [17]. Most prior work there has considered
the problem in the context of evolutionary games [18],
and often in an iterated learning setting [19]. Steedman’s
work [20] is particularly inspiring in which he suggests a
connection between natural languages and a hidden planning
language that preexists in mind, although it falls short of
establishing their computational connections. Our work intro-
duces a framework that establishes the connection between a
coordination language and the underlying planning language
where the new language arises solely from the need for
coordination. From a computational perspective, our work
is also inspired by a prior study that considers the incentive
of communication in a game-theoretical framework [21].

A language often represents a structured symbolic system
mapping symbols to semantic meanings that can be grounded
in the environment [22], [18], [23], [24], [25]. In this work,
we instead reverse engineer the process by considering
the mapping from temporal-state constraints to symbols
for language construction. These symbols (i.e., words) are
then used to form sentences, which introduce a plan space
abstraction to resolve miscoordinations. The idea of applying
abstraction to planning problems is not new. Most prior work
has focused on state abstraction for problem decomposition,
which has been well studied in both path and task planning
methods [26], [27], [28]. Such decomposition has also been
shown to benefit communication and coordination in multi-
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Fig. 2: Running exarilple that illustrates the proposed plan sketch
and the coordination process involved.

agent planning [29], [30]. The temporal-state constraints for
plan space abstraction used in our approach resemble options
in semi-MDP and LTL expressions in temporal logic [31],
[32], [33]. However, these prior approaches have mostly
focused on applying plan space abstraction to planning [34],
[31], or learning such abstraction for problem decomposi-
tion [35], [36]. We instead consider plan space abstraction
for coordination. Coordination program synthesis with LTL
and CSP [37] is particularly relevant but focused on only a
specific problem instance. It thus differs substantially from
our work targeting a general machinery for robust coordi-
nation under any instances, even though the coordination
mechanism under a given instance may appear similar.

Our problem may also appear similar to the problem of
learning or planning to communicate. There exists work
on developing communication schemes to maximize team
performance, where the problem could be considered either
in a planning or learning setting [38], [39], [40], [41].
For example, a communication scheme can arise from a
Dec-POMDP framework where communicating actions are
modeled specifically [39]. Such actions essentially augment
the observation function. The focus there is on exploiting the
additional information that can be associated with communi-
cation to maximize the expected return. No explicit connec-
tion is established between the communication symbols and
their semantic meanings (i.e., the language is not grounded).

III. PROBLEM FORMULATION

We adopt a joint representation while assuming discrete
state and action spaces: whenever referring to a plan, we
refer to a joint and optimal plan. The sequence of local
actions from each robot’s perspective is referred to as a
subplan. A plan is constituted of robot subplans, which,
in turn, can form into plans (details later). Similarly, states
and actions refer to joint states and actions. Substate and
subaction refer to each robot’s local state and action. Proofs
are included in the full version [42].

A. Problem Setting

We focus our discussion on the problem setting that

involves only two robots with the following assumptions:

o A1l: Both robots have access to the full planning domain
model, the task information, and sufficient computa-
tional resources, such that either robot can compute
plans independently.

o A2: Each robot may not observe the other robot or
changes to the environment made by the other during
plan execution (so as to focus on explicit coordination).



Al results in a special case of cooperative multi-agent
planning setting where agents maintain accurate beliefs about
the domain models of the others [43]. See Sec. V about
relaxing these assumptions. Without coordination, each robot
may choose any candidate plan for the task and execute the
corresponding subplan. Coordination is needed to ensure that
the robots do not choose plans that lead to miscoordinations,
i.e., situations when choosing different plans leads to subop-
timality or task failures. To allow local changes (i.e., changes
to subplans) that are critical for flexibility, part of the aim is
to retain as many candidate plans as possible. However, more
candidate plans will more likely lead to miscoordinations,
creating a challenging tradeoff. Intuitively, the solution is to
have the robots both commit to the same set of plans (a subset
of all candidate plans for the task) via coordination. The
challenge that remains is to identify the largest sets of plans
for different tasks where local changes can be independently
made without affecting the (global) task performance.

B. Running Example

We introduce a running example in Fig. 2 with two robots
{A, B} and three locations {1, 2, 3}. The robots cannot
switch locations or stay in the same location in the same time
step to avoid collisions. Without coordination, each robot
may choose any candidate plan for the task and follow its
corresponding subplan. In a situation where the plans are
chosen differently as shown in the thought bubbles, it would
lead to a miscoordination (i.e., a collision). We consider
a coordination process where either robot communicates a
“plan sketch” (specifying a set of candidate plans) for both
robots to commit to. A plan sketch may correspond to a
set of plans having certain properties. For example, A can
tell B to not move counter-clockwise, which resolves the
miscoordination illustrated in Fig. 2. In contrast to A directly
communicating its plan to B, this way, B has the flexibility
to either wait first and then move, or move first and then
wait, resulting in more robust coordination.

C. Preliminaries

We model the planning domain based on a slightly modi-
fied STRIPS model [44] as M = (P, A), where P is the set
of propositional state variables and A is the set of actions.
Each action a € A specifies a pair of robot subactions such
that a = (a?,a®?), where () denotes an ordered set. Each
action «a is associated with a set of preconditions, pre(a) C
P, add effects, add(a) C P, and delete effects, del(a) C P.
We consider a set of candidate tasks in the domain for our
language formation problem, which represents all relevant
tasks to the robots. Each candidate task is in the form of a
pair (I,G), where I € 2 and G specifies the propositions
required to be present in the goal state. Each (I, &) pair
introduces a planning problem O = (P, A,I,G). A plan 7
is a sequence of actions:

7= ((af,aP)..(a?, aB)) (D

n»'n

where n is the length of the plan. 7 may also be specified
as the combination of two subplans as 7 = (74, 75), where

74 = (af',..,a?) denotes the subplan for robot A and ()
here may also be viewed as an operator that element-wisely
combines 74 and 7% into a plan. When combined, 7# and
7B are assumed to be aligned from the first step and onward,
and the shorter subplan is padded with idle subactions.
Given a domain model M, the resulting state after execut-
ing plan 7 in state s is determined by the transition function

v, defined as follows where ‘-’ denotes concatenation:

I ifm=()
1) {v«amws»

else 7 =7’ - {a)
The transition function v for an action sequence with a
single action @ and state s is defined as:

v({a), s) = {(S \ Del(a)) U Add(a)  if Pre(a) C s
5 otherwise

2)

3)

Given a planning problem O = (P, A,I,G), an action
sequence 7 is a plan for O iff y(m, I) entails G and 7 has the
minimal cost. For simplicity, we assume that every action has
a cost of 1 and hence a plan for O minimizes the makespan to
satisfy G from I. A plan 7 also introduces a state sequence,
denoted by 7g, such that the first element w5[0] = I and the
last wg[n] = y(m, I) entails G with a plan length |7| = n.

D. Required Coordination

We next formally define required coordination that in-
troduces miscoordinations. Under our problem setting, a
miscoordination may occur when robots choose different
candidate plans. Given a planning problem O = (P, A, I, G),
TI(O) denotes the set of all candidate plans for O. Without
coordination, either robot can choose any plan in II(O).

Definition 1 (Required Coordination (RC)): Given
a planning problem O = (P,A,I,G), a required
coordination is the following condition: 37,7 € II(O)
(1 # ), (nf 7§ & T(O) | (mf,xF) & T1(0), where
™ = <7Ti4a7rlB>a7T2 = <7r§4,7r23>.

Intuitively, an RC condition defines a situation where there
are two different plans 71, w3 € II(O) for problem O but the
recombination of the subplans does not belong to II(O) (i.e.,
not a plan for O). If the set of candidate plans that the robots
commit to includes these two plans, a miscoordination may
occur when the robots choose m; and 73, respectively. In
such cases, we say that the two plans introduce RC. Two
different plans do not necessarily introduce RC (Fig. 3).

Proposition 1: Given a domain model M = (P, A) and a
set of candidate tasks 7, coordination is necessary if and only
if the following holds: 3,y € II(O), (71, m2) introduces
RC, where (I,G) € T and O = (P, A, I,G).

Given any planning problem O above, if no plan pair exists
that introduces RC, we consider the following two possible
cases. 1) No plan or only a single plan exists: in such a case,
either the robots will both fail to find a plan or they will find
the same plan. No coordination is necessary. 2) There are
multiple plans but none of them pair-wisely introduce RC.
In such a case, either robot can select any candidate plan for
O, and the recombined plans are guaranteed to be in II(O)
(Def. 1) and it is hence miscoordination-free.
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Fig. 3: Three different plans for the task in Fig. 2: the first two do
not introduce RC: subplan 7{* (black arrows) in 71 can be switched
with its counterpart (w3') in 7 and recombined with subplan 7%
(blue dashed arrows) without introducing miscoordinations. Both
1 and 72, however, introduce RC with 3.

T —

e ——>

In Fig. 3, m; and 7 do not introduce RC. Hence, had
these two plans being the only plans in the set of candidate
plans that the robots commit to (as a result of coordination)
for a task, no additional coordination would be necessary.
This observation already hints on our language construction:
a language will be required to always express {m1, w2} and
{m3} differently under the task in Fig. 2.

E. Agent Coordination Language (ACoL)

The ability to separately express different sets of candidate
plans requires a language to specify constraints on plans,
essentially forming plan state abstraction. Since plans are
temporal state sequences, we consider words as symbols
that map to temporal-state constraints. These symbols can
be further combined to form sentences for expressing more
complex constraints. We use : to indicate a range of indices
(inclusive at both ends). For example, mg[x : y] returns the
set of states in g indexed from x to y. An abstract state S;
corresponds to a subset of the state space S (i.e., S; C 9).

Definition 2 (Temporal-State Constraint (TSC)): A TSC
over a state space S specifies a constraint ¢ in the form
of (=51...95;...5n, where S; C S is an abstract state.

A plan 7 under the same S satisfies a TSC ( if there
exists a set of strictly monotonically increasing integers
Josj1,92 - - -jm With jo = —1 and j,, = |x|, such that
ms[ji—1+1: ;] € S;and 7g[js—1] € S; and 75[j; +1] € S;
(n > m > 1 > 1). Intuitively, a TSC breaks a state sequence
into segments such that the states in each segment belong
to the same abstract state while their immediately adjacent
states (if present) belong to other abstract states. Notice that
a plan may satisfy multiple TSCs if the abstract states are
allowed to overlap; otherwise, the TSC for a plan will be
unique. An illustration of a TSC is provided in Fig. 4.
Alternatively, we also refer to that a TSC ( expresses a
plan 7 (denoted by ¢ O ), if 7 satisfies (. One may use
more expressive constraints for language formation, such as
specified by LTL and CTL [32], [33]. We choose TSCs since
they are easier to analyze while still being extensible.

Definition 3 (Language): A language for a domain M =
(P, A)isapair L= (W, O), where W is the vocabulary and
O is the set of compositional operators that can be applied
to connect the words. Each word w € W is a TSC over
S =2 and TSCs must remain closed under O.
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Fig. 4: An illustration of a TSC. The top shows the abstract states
associated with the TSC and the bottom a plan as a state sequence
that satisfies it. The rectangle nodes represent abstract states with
their included ground states shown inside.

Operators are applied to connect the words in a language
to form more complex TSCs, which are also referred to
as sentences. A given language thus introduces a rich set
of TSCs for the domain. Not all languages are of interest
to the robots. To be useful, a language must be able to
relax RCs for any candidate tasks (following Proposition
1). Any language with such a capability is referred to as a
coordination language. In the following, with a slight abuse
of notation, we denote any TSC ( that can be expressed by
a language L as ( € L.

Definition 4 (Coordination Language): A language L for
a domain M = (P, A) is an (agent) coordination language
under a set of candidate tasks 7 if the following condition
holds: V& € II(O) where O = (P, A,I,G) and (I,G) € T,
1) 3¢ € £, I 7, and 2) the subset of plans in II(O)
that are expressed by ¢ must be RC-free, or more formally,
{m|¢ 27 A7 €TI(O)} pair-wisely introduce no RC.

More intuitively, since a sentence may express multiple
plans, a coordination language ensures that, under any can-
didate task, 1) any plan is expressible by a sentence in the
language (completeness), and 2) the plans that are expressed
by any such sentence do not pair-wisely introduce RC (RC-
free). Hence, the language can be used to coordinate the
robots under any candidate task. Finding a coordination
language is not difficult. For example, when we use words
for grounded actions and concatenate them, we can express
any plan exactly. Such a language, however, is undesirable
since it is too rigid for coordination. For more flexibility,
we would like to maximize the number of plans expressed.
Since the situation may differ from task to task, instead, we
consider the problem to minimize the size of the vocabulary,
which also aligns with language design principles [45], [46],
[47]. To simplify its formal analysis, we only consider
concatenation (-) and assume words formed by abstract states
only (i.e., W C 25), which introduce a state abstraction.
Note that TSCs are naturally closed under -.

Definition 5 (State Abstraction): A state abstraction is a
set of abstract states, Z = {S,}, over a subset S’ of the
state space S, corresponding to a many-to-many mapping
f S — Z, where a state mapping to an abstract state
belongs to that abstract state.

Theorem 1: The problem of deciding whether a coordi-
nation language for domain M under a set of candidate
task 7 exists with vocabulary WV as a state abstraction of
a minimal size K and O = {-} (concatenation), or denoted
by Darinw = (M, T, K), is NEXP-complete.
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Fig. 5: Determining (o™, 8*) with two plans (top and bottom) that
introduce RC for a given task. When {1, si, s2} (or {s3, sa,
s5}) are pair-wisely separated into different abstract states, the two
sentences for expressing these two plans will be different since they
must represent s1 and sz (or sz and s4) as different abstract states
with the preceding (or trailing) abstract state shared between the
sentences, thus relaxing the RC.

F. Finding Coordination Languages

Next, we focus on developing an approximate solution
for Dysinw. We define a perfect state abstraction as a state
abstraction that introduces a partition of the state space: every
state belongs to one and only one abstract state. f in Def. 5
becomes a surjective mapping over the entire state space S.

Lemma 1: Given a coordination language (W, {-}) for
domain M under a set of candidate tasks 7T, there is another
coordination language, (W', {-}), where W' is perfect.

Theorem 2: The decision problem of D, With a per-
fect vocabulary, denoted by Dy, w+, is NEXP-complete.

To simplify notations, we also use D,;,y+ to denote
the problem of searching for a coordination language with a
minimal perfect state abstraction when there is no ambiguity.
Note that a language that uses a perfect state abstraction
may have a reduced flexibility since it tends to create more
stringent TSCs. Using a perfect state abstraction implies that
the TSC for expressing any plan is unique.

For each candidate task (I,G) € T of a domain M =
(P,V), we can compute II(O) for the induced planning
problem O = (P,V,I,G). For any plan pair (m,m) in
II(O) that introduces RC, we denote the first and last places
where they differ as a pair d = (a, 8). « and 3 can be the
same; [ does not always exist since the ground goal states
for m; and 7, may be different. o (/3) includes a state from
w1 and a state from wo. We use a* (8*) to denote the three
pairs of states that are formed pair-wisely by « (5) with the
previous (next) state shared by the plans. Fig. 5 illustrates o*
and $* with two plans. We collect (a*, 8*) for all (71, 72)
and for all (I,G) € T as D.

Theorem 3: Given the D above induced from a given
domain M and a set of candidate tasks 7T, if a perfect
state abstraction VW (with its mapping denoted by fT)
satisfies the condition that V(a*, %) € D, Vi fT(a*[i][0]) #
Fre i) or Vi fBE0) £ BTG €
{0,1,2}), the language of (W, {-}) is a coordination lan-
guage for M under 7.

Essentially, the condition above requires the three states that
are associated with either o* or §* between any two plans
(that introduce RC) to be pair-wisely separated in the state
abstraction. Intuitively, this enables the language to always
distinguish between the two plans so that the associated
RC can be relaxed. Using Theorem 3, we can convert the

Algorithm 1: Approx. minimal language for Dz, +
input : M, 7,D =1
forall (I, G) € T do
Formulate O = (M, I,G)
Compute II(O)
forall 71,7 € II(O) do

if RC is introduced then

Determine o* and 5*
L Add (a*, 8*) into D

Find an f7 that satisfies the condition in Theorem 3
Extract the perfect state abstraction W from f+
return {(W, {.})}

ae- @ =
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Fig. 6: Left: A possible set of state pairs (connected by edges)
required to be separated by a perfect state abstraction in a coor-
dination language for our running example, as determined by the
condition in Theorem 3. Each node is a state with the first and
second numbers representing the locations of A and B, respectively.
The blue clusters present a possible vocabulary for the language.
Right: Brown cells are non-traversable spaces. Two of the three
abstract states (labeled by ‘0’ and ‘1’ above) for this domain contain
a single ground state. The remaining ground states all belong to the
third abstract state (‘2’).

problem of searching for a minimal coordination language
to the problem of finding a minimal perfect state abstraction
that satisfies the condition therein. See also Alg. 1.

The condition described above in Theorem 3, however, is
only a sufficient condition for a coordination language—there
may exist a coordination language that does not satisfy it.
The positive side is that this solution only requires solving a
set of planning problems (of size | 7| to be precise), which
have efficient existing solutions. Existing planning methods
that return all plans, such as m-A* [48] or DFBB [49],
can be used. For our running example in Fig. 2, a perfect
state abstraction produced by Alg. 1 is presented in Fig. 6
(left). Readers may have observed that the words in Fig. 6
(left) corresponds to specifying the location of robot B. The
robots can use these words to compose sentences to specify
clockwise or counterclockwise movements for B, consistent
with our earlier discussion of Fig. 2.

G. Tractable Approximation

The approximate solution in Alg. 1 guarantees complete-
ness and RC-freeness when using the computed language
for coordination. However, it is largely intractable due to
the requirement of computing all optimal plans for each
candidate task (I,G) € T. A key challenge for computing
an optimal plan is that it can be exponentially long. As a
result, we propose another approximate solution that only
considers plans up to a certain length limit k. Computing
all optimal plans for all (1, G) € Ti. ((Ix,G) € Ti) where



G (G) is reachable from I(I;) in k steps or under for all
(I,G) € T becomes polynomial. By replacing 7 with Ty, in
Alg. 1 (essentially considering only the first and last & steps
of any optimal plan) and combining with a greedy heuristic
(Sec. IV) for finding fT, we have a polynomial solution. The
resulting language is still complete but no longer guarantees
RC-freeness. However, we will show in our evaluations that
the resulting language may be more desirable in practice.

Practical Note: Using a coordination language requires both
robots to first “learn” the language, similar to how people
learn the same language to communicate [50]. Learning
a coordination language involves the maintenance of the
language specifications (i.e., (W, @)), such as the mapping
from ground states to words (e.g., f*). A language only
needs to be precomputed once and shared among all speaking
robots. It can then be used by them for any candidate task.

IV. EVALUATION RESULTS

We refer to the approximate solution in Alg. 1 as Approx
and the tractable solution in Sec. III-G as T-Approx. Our
evaluation scenarios are in a gridworld-based setting, similar
to the running example. At any time step, the robots can
move to any adjacent cell or stay. The robots are not allowed
to stay in the same cell or swap locations at the same
time step to avoid collisions. The candidate tasks (7°) for
Approz include all possible tasks in the domain unless stated
otherwise. Simulations were created using Webots.

A. Interpreting the Generated Languages

First, we inspect the language in a relatively simple
environment in Fig. 6 (right). We assume that the robots can
only observe each other in adjacent cells so miscoordinations
can lead to collisions. We implemented a brute-force method
that exactly computed the minimal language for Dy, w+
(Theorem 2). The abstraction returned by such a method
contains 3 abstract states with two of them containing only
a single ground state in Fig. 6 (right).

To understand the language, first, observe that miscoordi-
nations can only occur in tasks where the robots must swap
their locations while starting non-adjacent to each other. In
these tasks, miscoordinations can occur where the robots
both choose to start first. For all the other tasks, the plan is
always unique such that both robots would choose the same
plan so no coordination is needed. Hence, a coordination
language needs only to specify which robot starts first.

Now, consider the 3-word language above: two words
in Fig. 6 (right) denoted by ‘0’ and ‘1’, respectively, with
the third denoted by ‘2’. Consider a scenario where robot
A starts at the top middle and B bottom left, and must
swap locations. If robot A is to move first, either robot can
communicate “202”; similarly, for B to move first, “212” can
be communicated. Since the two plan sketches are expressed
differently in the coordination language, miscoordination is
avoided. What is interesting here is that the “semantic mean-
ings” of abstract states or words are task context dependent.
For example, depending on the task, ‘0’ may be used in
different sentences to express either A or B moving first.

env. size | [T] [ST [ 1Z] time (s) [~ Z[ | time (s) [75] [ 1Z5] | time (s)
GW #1 2x2 132 12 3 8.3 4 0.1 68 4 0.1
GW #2 2x3 870 30 | — > 36000.0 10 0.5 438 10 0.4
GW #3 2 x4 3080 56 | > 36000.0 12 9.0 | 1544 12 4.1
GW #4 3x3 5112 ] — > 36000.0 17 435 | 2552 17 18.0
env.size | [7]| | [S] | Manhattan(I,G) | =Z time (s) [75] [ 1Zs] | time (s)
GWB #1 2 x4 3080 56 all possible tasks 12 186.5 | 2920 12 159
GWB #2 3x3 3080 56 all possible tasks 11 211.6 | 2920 11 14.8
GWB #3 3 x4 8010 90 all possible tasks 13 71714.8 | 6330 4 47.9
GWB #4 2x5 8010 90 all possible tasks 13 | 112129.1 | 6330 4 55.6
GWB #5 3x3 380 56 >4 5 1.4
GWB #6 3 x4 636 90 >5 4 13.5
GWB #7 3 x5 956 | 132 >6 4 191.4
GWB #8 4 x4 956 | 132 >6 4 199.6

TABLE I: Performance of both approximate solutions implementing
Alg. 1 (with 7 and 7s, respectively) compared to a brute-force
solution for D ;;,, -+ in a multi-robot pathfinding domain. Column
‘|Z|” is the vocabulary size returned by brute-force and ‘| = Z|’
and ‘|Zs|’ are the sizes returned by the approximate solutions,
respectively. The times for computing plans for all candidate tasks
are included for the approximate solutions.

B. Language Properties

In this evaluation, we implemented Approx (using 7) and
T-Approx (using T;), and compared them with the brute-
force method discussed in Sec. IV-A. For the approximate
solutions, we considered only a* in Theorem 3 and imple-
mented a greedy algorithm to determine the minimal state
abstraction (for finding f¥), i.e., adding any remaining states
to an abstract state until no more can be added.

Language Construction. Table I shows the results. The
top part is with open grid-worlds, and the bottom with
grid-worlds traversable only at the border cells (GWB): all
inner cells are untraversable. We can see that both of our
approximate solutions are effective at finding coordination
languages with a small vocabulary that partitions the state
space. In many cases, our approximate solutions returned a
vocabulary size that was significantly smaller than the set of
ground actions (25 since each robot has 5 different actions).
We can observe that restricting the plan length in T-Approx
does not have much influence on the vocabulary size when
the environments are small (compared to Approx); however,
for larger environments (with longer plans), the influence
is substantial (GWB #3 and #4). We analyze its impact on
coordination in Sec. IV-C. We also analyzed restricting to
a subset of candidate tasks of 7 in Approx whose plans
were guaranteed to be longer than a threshold (in contrast to
a maximum length restriction in T-Approx). Towards this
end, we evaluated Approx in environments (GWB #5-8)
where the Manhattan distances between I and G for one
of the robots must be no less than a specified threshold
m. We observe that restricting 7 in Approz in such a
way have a similar impact on the vocabulary size as in 7T-
Approx. We also observe that the computational saving in
T-Approx (as compared to Approzx) due to its polynomial
requirement is significant (GWB #1-4). Finally, we observe
that the vocabulary size stays invariant across some of the
environments, implying commonalities among the languages
that are independent of the environment size.

Next, we analyze the proposed language in its most
restrictive form as computed by Approz. The benefits with
the language by T-Approxr would be more substantial (at
the cost of losing RC-freeness analyzed in Sec. IV-C).

Communication Saving. We compared with a baseline that
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Fig. 7: The X-axis indexes into the problems selected for plotting (with details explained in the text). Left: Communication cost: plans
vs. TSCs for GWB #7 in Table I, where the state sequence length is always 7. Middle: Execution flexibility: plans vs. TSCs for GWB

#7. Right: Planning cost: A* vs. A* with TSC for GWB #7.
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Fig. 8: Left: Problem setting for the navigation domain with
dynamic obstacles (i.e., a human worker). Right: The success rates
(reported as absolute changes with respect to the success rate of
the baseline without replanning) and collision rates of 1000 tasks
with dynamic obstacles for all methods.

communicates the entire plan. The communication cost of
the baseline is determined by the length of the plan, and for
Approx the length of the TSC. Given a plan chosen by the
communicating agent, a sentence is obtained by translating
it to the corresponding TSC, which is unique. Even though
some languages in prior work [51], [52] also have this
feature, translating in the other direction is difficult (see Sec.
IV-B) due to incomplete plan specification [53]. We chose the
setting for GWB #7 in Table I since the effect of abstraction
was more prominent. The result is in Fig. 7 (left) for only
the first 100/784 problems where the communication cost
differs. The average saving is 33.3% among the 784 plans
(27.3% among all the 956 plans).

Increased Flexibility. To verify that TSC increases execution
flexibility, using the same setting as above, we evaluated
the number of plans that were available to a robot (e.g.,
listener) after receiving a TSC from the other robot (i.e.,
speaker). In this evaluation, the speaker always chose the
first plan that was found and translated it to a TSC in the
coordination language. The result is in Fig. 7 (middle) for
the first 100/774 problems where the number of available
plans with TSC is more than one. The increase in flexibility
is notable: the average number of plans is 14.7 among the
774 plans or 12.1 among all the 956 plans (compared to 1
with the baseline).

Reduced Planning Cost. We evaluated here how coordi-
nation could help the listener receiving a TSC reduce its
planning cost by providing “planning guidance”, compared
with planning without such guidance. An A* search was
implemented with Manhattan distance as the heuristic. We
also modified the A* search to consider a given TSC (sent
by the speaker). More specifically, when expanding a node,
the modified algorithm would not consider its neighbors that
were not aligned with the given TSC. The result is presented
in Fig. 7 (right) for the first 100 out of all the 956 problems.
The average node reduction is 1.6-fold among all the 956
problems, which is substantial. For the languages studied
in [51], [52], the listener would have to compute all the plans
and identify one compatible with the language expression,
which is more expensive than computing a plan itself!

C. Robust Navigation with Dynamic Obstacles

Here, we demonstrate how the language contributes to
robust coordination. We consider a warehouse setting (see
Fig. 8 (left)) where robots are tasked to deliver products
between one of the storage zones (located at the corners
of the workspace and labeled as S1 and S2) and one
of the dispatch zones (located at the other corners of the
workspace and labeled as D1 and D2). Products must be
transported between the corresponding zones (i.e., S1 — D1
and S2 — D2). For a given task, the robots start randomly
from different corners and must deliver, respectively, to the
corresponding zones for storage or dispatch. At the same
time, a human worker may be present in the workspace at a
random location other than the four corners. We assume that
the human worker would not change his/her location during
the task. Since the robots are from different manufacturers,
they would not be able to robustly detect each other but can
both detect the human. To guarantee safety, the robots must
coordinate to avoid collisions with each other and the human.
We assume that robots move at the same speed. The robots
can coordinate their plans via a coordination language before
execution but can only detect the position of the human after
the plan execution starts.

We tested the success rates of 1000 randomly generated
tasks when the robots used the exact plan or a TSC for
expressing the plan to coordinate using the language com-
puted by Approz and T-Approx with k = 2. When the
coordination language is used, the robots can choose other
candidate plans (if available) that are expressed by the TSC
even when the initial plan would lead to a collision with the
human. Fig. 8 (right) shows the results for environments of
different sizes where a language is constructed for each en-
vironment. We can see that although the language computed
by Approx did not lead to any collisions, it only marginally
increased the success rate as a result of the additional
flexibility. The language computed by T-Approx, on the
other hand, provided substantially more flexibility while
introducing a small amount of collisions. The baseline where
the robots randomly re-pick a plan that would not collide
with the human, thus providing the maximum flexibility
since an alternative plan always exists in these environments,
led to a significantly increased collision risk. Hence, the
language computed by T-Approz that trades off flexibility
with collision risk could be more useful in practice.

V. CONCLUSIONS AND DISCUSSIONS
A novel problem for forming Agent Coordination Lan-
guage (ACoL) was introduced. We viewed language as
a machinery for resolving miscoordinations and reverse-



engineered a language to maximize flexibility during plan
execution while guaranteeing optimality. We formally studied
the language formation problem and showed that it is NEXP-
complete. Two approximate solutions were then developed
and evaluated comprehensively. Future work includes relax-
ing the requirement of plan optimality and/or RC-freeness
for more flexibility, coordinating multiple agents (using the
language constructed for two agents or, more generally,
constructing languages for multiple agents), relaxing the
knowledge assumption of the full joint domain model, and
incorporating observations. Application-wise, robots commu-
nicating “plan sketches” may also be used to conserve pri-
vacy [54]. The flexibility in choosing plans may alternatively
be interpreted as hiding information (e.g., plan preferences)
from other agents. Another possible application is to consider
communication denied environments where the language can
be designed to handle situations where certain parts of the
environment are prone to communication challenges.
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