
Order Matters: Generating Progressive Explanations
for Planning Tasks in Human-Robot Teaming

Mehrdad Zakershahrak, Shashank Rao Marpally, Akshay Sharma, Ze Gong, and Yu Zhang

Abstract— Prior work on generating explanations in a plan-
ning context has focused on providing the rationale behind
an AI agent’s decision-making. While these methods offer the
right explanations, they fail to heed the cognitive requirement
of understanding an explanation from the explainee or human’s
perspective. In this work, we set out to address this issue by
considering the order for communicating information in an
explanation, or the progressiveness of making explanations.
Progression is the notion of building complex concepts on
simpler ones, which is known to benefit learning. In this
work, we investigate a similar effect when an explanation is
composed of multiple parts that are communicated sequen-
tially. The challenge here lies in determining the order for
receiving different parts of an explanation that would assist
in understanding. Given the sequential nature, a formulation
based on goal-based MDP is presented. The reward function of
this MDP is learned via inverse reinforcement learning based on
training data. We evaluated our approach in an escape-room
domain to demonstrate its effectiveness. Upon analyzing the
results, it revealed that the desired order arises strongly from
both domain-dependent and independence features. This result
confirmed our expectation that the process of understanding
an explanation for planning tasks was progressive and context
dependent. We also showed that the explanations generated
using the learned rewards achieved better task performance
and simultaneously reduced cognitive load. These results shed
light on designing explainable robots across various domains.

I. INTRODUCTION

As robots benefit a diverse set of domains, human-robot
interaction has evolved to be an increasingly important
subject. In human-robot teaming, it is desired that the in-
teraction occurs coherently, as is observed in human-human
teaming [1], [2]. Like with a human teammate, a robotic
teammate is expected to understand its human partners and
explain its decisions or behaviors when necessary. Expla-
nations in a teaming context support the rationale behind
a teammate’s decision-making [3] and help maintain shared
situation awareness and trust [4], [2]. Although there is much
prior work on generating explanations, the focus has been
on developing the right explanations from the explainer’s
perspective rather than good explanations for the explainee
[5], [6], [7].

Unsurprisingly, the right explanation may not necessarily
be a good explanation–anyone with teaching or mentoring
experience would share such a sympathy. The dissonance
between the explainer and explainee may result from various
inconsistencies, such as information asymmetry or different

Mehrdad Zakershahrak, Shashank Rao Marpally, Akshay Sharma, Ze
Gong, and Yu Zhang are with the School of Computing, Informatics
and Decision Systems Engineering, Arizona State University, Tempe,
AZ. {mzakersh, smarpall, ashar204, zgong11,
yu.Zhang.442}@asu.edu

cognitive capabilities, to name a few. These inconsistencies
may be summarized as model differences–the differences
between the cognitive models that govern the generation
and interpretation of an explanation, respectively, for the
explainer and explainee [8]. When these two models are
the same, as is assumed in most prior work, an explanation
from the explainer’s perspective would be perfectly right
and understandable to the explainee, as if the explanation
were made for the explainer itself. The more general case
where the models differ has also been investigated [9], [10]
under the model reconciliation setting. The focus there is
on explaining domain model differences such that the two
models become more compatible for a given plan. However,
one remaining challenge in explanation generation is to
consider the differences in the cognitive capabilities for
understanding an explanation.

In this work, we take a step further by generating ex-
planations in a way that assists their understanding for
the explainee. This is especially relevant in human-robot
teaming since robots are frequently deployed to situations
that require a high cognitive ability that humans often do
not possess. In such cases, generating explanations that are
easily understandable is equivalent to reducing the cognitive
effort required for interpreting them. In this work, we study
the order for communicating information in an explanation.
Except for very simple domains, making an explanation
is not an instantaneous effort; instead, information in an
explanation must be conveyed in small parts sequentially.
Explanation generation thus relates to learning progression
in the psychology and education literature in observance of
humans’ cognitive limitations [11], [12], [13]. It is based on
the intuition that complex concepts should be built on the
understanding of simpler ones. The idea of progressive expla-
nation generation draws inspiration from a similar problem
characterization when explaining a plan: the interpretation of
new information depends on the current context established
as a result of the information received earlier. Consider the
following example of a conversation between two friends,
which illustrates the importance of providing information in
a proper order when making an explanation:

Amy: Let’s go to the outlet today.
Monica: My car is ready.
Monica: The rain will stop soon.
Amy: Wonderful!
Monica: By the way, today is a holiday
(shops closed).
Amy: You are telling me now?!
Monica: Let us go to the central park!

Such cognitive dissonance as illustrated above frequently

occurs in our lives. Our goal in this work to avoid similar
situations when a robot is making an explanation. The
challenge lies in modeling the changes of context that are
hypothesized to correlate with the cognitive effort for assimi-
lating new information. With such a model, we can determine
the order for communicating information that reduces the
cognitive effort. To this end, a general formulation based
on goal-based Markov Decision Processes is presented. We
propose to learn a quantification of the cognitive effort as the
reward function in an inverse reinforcement framework [14],
[15], [16]. To allow generalization, we use both domain-
dependent and domain-independent features to relate to the
rewards associated with the changes of context. Learning is
based on explanations supported via human subject studies.
We set out to test the following hypotheses:
• H1. Our method can learn to predict humans’ preferred

order for communicating information.
Our results verified H1, suggesting that interpreting an

explanation is a progressive process with changes of context.
• H2. Generating explanations based on the learned re-

ward function reduces the cognitive effort.
Our results verified H2, suggesting that order indeed

matters for explanation generation!
• H3: Progressive explanations improve task performance.
A comparison with two baseline methods verified H3.

II. RELATED WORK

Explainable AI [17] is increasingly considered an essential
paradigm for designing future intelligent agents, especially
as such systems begin to constitute a necessary part of our
lives. The critical requirement of explainable agency [18] is
to be “explainable” to the human partners. To be explainable,
an agent must provide a solution to achieve a goal and make
sure that it is perceived as assistive by its human peers. A
determinant here is the human’s interpretation of the agent’s
solution. It is critical to take careful steps to avoid situations
where the agent’s assistance would be interpreted as no more
than an interruption, which leads to the loss of situation
awareness and trust [19], [20], and contributes to the pitfalls
of earlier effort in designing intelligent assistants.

The key challenge to explainable robotics hence is the abil-
ity to model the human’s cognitive model that is responsible
for interpreting the behaviors of other agents [1]. With such a
model, there are different ways to make the robot’s behavior
explainable. One way is to bias the robot’s behavior towards
its expectations based on the human’s cognitive model.
Under this framework, a robot can generate legible motions
[21] or explicable plans [22], [23]. Essentially, the robot
sacrifices optimality to respect the human’s expectation–the
resulting plan is often more costly. Another way is to provide
forewarning of the robot’s intention before execution. In [24],
such forewarning is realized by providing additional contexts
to help explain the robot’s decision. The third way, which
is the most relevant to ours, is for the robot to explain
its decision via explanations [5], [6], [7]. The advantage of
explanation generation, compared to generating explainable

Fig. 1: The model reconciliation setting [9]: MR denotes the
robot’s model and MH denotes the human’s model used to
generate an expectation of the robot’s behavior (i.e., πMH).

plans, is that the robot can keep its plan optimal. However,
as mentioned earlier, the focus in explanation generation
has thus far been focused on providing the rationale behind
the explainer’s decision-making while mostly ignoring the
explainee. In [9], this gap is addressed by considering
explanation generation as a model reconciliation problem,
which considers the explainee’s model. The goal there is to
reconcile (i.e., reduce) the differences in domain models so
that the robot’s plan would be interpretable also in the model
of the human (i.e., explainee).

The motivation of progressive explanation generation may
be compared to that of minimizing effort in replanning [25].
While progressive explanation generation is about reducing
the cognitive effort for interpretation, replanning is about
reducing the computational costs [26]. However, both involve
the processing of additional information given the current
context. Our results suggest that there may be a deeper
connection between them.

III. MODEL RECONCILIATION

We base our work on the model reconciliation setting that
considers both the models of the explainer and explainee,
which is introduced in [9]. As shown in Fig. 1, the human
uses MH to generate her expectation of the robot’s behavior,
while the robot’s behavior is being created under the robot’s
model MR that is different from MH . Therefore, πMR ,
the plan created under MR, could be different from πMH ,
the plan created under MH , given a planning problem.
Whenever these two plans differ, the robot’s plan must be
explained. Both MR and MH are assumed to be known.

Definition 1 (Model Reconciliation [9]): Given a plan-
ning problem specified as an initial and goal state pair (I,G),
the model reconciliation setting is a tuple (π∗I,G, 〈MR,MH〉)
where cost(π∗I,G,M

R) = cost∗MR(I,G): π∗I,G is the robot’s
chosen plan for (I,G) under MR.
cost(π∗I,G,M

R) above returns the cost of the robot’s
chosen plan under the model MR; cost∗MR(I,G) returns
the cost of the optimal plan given the initial state and
goal state pair under MR. Therefore, the constraint of
cost(π∗I,G,M

R) = cost∗MR(I,G) requires that the robot
always chooses an optimal plan. It is also assumed that the
human is rational when interpreting the root’s plan. It is not
difficult to extend the formulation to noisily rational humans.

In such a setting, when π∗I,G is not optimal in MH , the
robot must generate an explanation to modify the human’s

model MH such that π∗I,G becomes optimal (and hence
explainable) in the human’s modified model (denoted as
M̂H). As a result, an explanation in a model reconciliation
setting can be considered as requesting changes to the
human’s model. Note that making explanations can help with
debugging MR if the robot’s model was incorrect. In this
paper, however, we consider only that the human model is
missing information (as in [9]) that is present in the truth
domain model captured by MR.

To specify model changes, a model function Γ :M→ 2F

was defined in [9] to convert a model to a set of model
features, where M is the model space and F the feature
space. In this way, one model can be updated to another
model with editing functions that change one feature at a
time. The set of missing features in M2 with respect to
M1 is denoted as ∆(M1,M2) = Γ(M1) \ Γ(M2) and the
distance between the two models is the size of ∆(M1,M2),
denoted as δ(M1,M2). In this work, we assume that the
models are specified as PDDL domain models [27], which
are extensions of STRIPS models [28]. A domain model
D = (P,A) comprises a set of predicates, P , and a set
of actions, A. A state s ⊆ P is a subset of predicates that
are true. Each action a ∈ A can change a state by adding
or deleting predicates. An action is represented as a tuple
a = (pre(a), eff+(a), eff−(a), ca), where pre(a) denotes
the preconditions of the action, and eff+(a) and eff−(a)
are add and delete effects, respectively. ca is the cost of
the action. For instance, an example of domain model and
problem for Amy in our motivating scenario would be:

Initial state: not-holiday
Goal state: happy
Actions:
OUTLET-SHOPPING
pre: not-holiday (car-ready is-sunny)
eff+: happy

VISIT-PARK
pre: (car-ready is-sunny)
eff+: happy

For simplicity, we use only predicates without arguments
above. Predicates in the parentheses are preconditions that
are nice to have but not required. The goal is to achieve the
effect of happy. In this example, the domain model, denoted
as MAmy, will be converted by the model function Γ to:

Γ(M Amy) = {
OS-has-precondition-not-holiday,
OS-has-precondition-car-ready-optional,
OS-has-precondition-is-sunny-optional,
OS-has-add-effect-happy, ...}

where OS is short for the action OUTLET-SHOPPING
above. The function turns a model into a set of features that
fully specifies the model. As a result, we can now specify
changes to a model by specifying changes to its feature set.

Definition 2 (Explanation Generation [9]): The explana-
tion generation problem in a model reconciliation setting
(π∗I,G, 〈MR, MH〉) is the problem to search for an explana-
tion as a subset of ∆(MR,MH) such that:
1) Γ(M̂H) \ Γ(MH) ⊆ Γ(MR), and

2) cost(π∗I,G, M̂H) − cost∗
M̂H

(I,G) < cost(π∗I,G,M
H) −

cost∗MH (I,G).
where M̂H denotes the human’s model after the changes.
The first condition requires the changes to the human’s model
to be consistent with the robot’s model. The second condition
states that the robot’s chosen plan must be closer (in terms
of cost) to the optimal plan after the model changes than
before–an explanation should be moving the robot’s chosen
plan closer to the optimal plan under the human’s model.

Definition 3 (Complete Explanation): A complete expla-
nation [9] is an explanation that additionally satisfies
cost(π∗I,G, M̂

H) = cost∗
M̂H

(I,G).
A complete explanation requires the changes to make the

robot’s chosen plan optimal in the updated human model.

IV. PROGRESSIVE EXPLANATION GENERATION

We can now formulate the problem of progressive explana-
tion generation. Recall that the problem here is to search for
an order for communicating information in an explanation
that reduces the cognitive effort of interpretation. Since an
explanation in the model reconciliation setting is a set of
feature changes, we associate an interpretation cost with
each unit feature change. The cognitive effort required for
interpreting an explanation hence becomes the cumulative
cost at each step. Hence, we model the interpretation cost
for each change with a model distance metric, denoted
as ρ(Mi,Mi+1) for the ith feature change, where Mi is
the model before the i-th feature change and Mi+1 is the
model after that change. Thereby, progressive explanation
generation can be defined as an optimization problem:

Definition 4 (Progressive Explanation Generation (PEG)):
A progressive explanation is a complete explanation
with an ordered set of unit feature changes that
minimize the sum of the model distance metric:
arg min

∆(M̂H ,MH)

∑
fi∈〈∆(M̂H ,MH)〉 ρi, where ρi is

short for ρ(Mi,Mi+1), i is the index of unit feature
changes, and fi denotes the i-th unit feature change.

The angle brackets above denote an ordered set. The
challenge remains is the computation of the model distance
metric. This metric depends on the context when an unit fea-
ture change is made (i.e., communicated to the human) and
cannot be directly computed. We use a learning approach.

A. Learning the Model Distance Metric

To learn the model distance metric for PEG, we formulate
the problem as an inverse reinforcement learning (IRL)
[14], [15], [16] framework, where we assume the task of
generating explanations can be expressed as a goal-based
Markov Decision Processes (MDP). A goal-based MDP is
defined by a 6-element tuple (S,A, T,R, γ,G), where S
is the state space and A is the action space. The domain
dynamics is represented as the transition function T that
determines the probability of transitioning into state s′ when
taking an action a in state s (i.e., P (s′|s, a)). R is the
reward function, and the goal of the agent is to maximize
the expected cumulative reward. γ is the discount factor
that encodes the agent’s preference of short-term rewards

Fig. 2: Illustration of the MDP that underlies PEG. At each
time step, the human’s model Mi serves as the state.

over long-term rewards. G is a set of goal states where
for each g ∈ G, T (g, a, g) = 1,∀a ∈ A. We chose goal-
based MDPs since explanation generation in a given domain
could have different explanation goals depending on the
planning problem (I,G) in the model reconciliation scenario
considered: the feature set to be included in the explanation
and communicated may differ from scenario from scenario.

Fig. 2 demonstrates the MDP that underlies PEG. In our
work, the state space S is the set of all possible human
models, and the action space A is the set of all possible
unit feature changes. The transition function T captures the
probability that the human model would be updated to M ′

when the human model is M and the robot explains f to her
(i.e., P (M ′|M,f)). The model distance metric ρ serves as
the reward function, which depends on both the current and
next human models.

B. Applying IRL

Following prior work on IRL [14], [15], [16] and to allow
generalization, we model the distance metric as a linear
combination of a set of weighted features:

ρ(M,M ′) =
∑
i

θi · ψi(M,M ′) = ΘTΨ(M,M ′)

where Ψ = {ψ1, ψ2, . . . , ψk} is the set of features with
respect to the state pair (M,M ′). Θ = {θ1, θ2, . . . , θk} is
the set of weights for the features.

Given a set of traces as a set of explanations (each is
a sequence of unit features changes under different model
reconciliation scenarios) obtained from human subjects, our
goal is to learn the model distance metric ρ, which in turn
requires us to learn the weights Θ given a set of features.
Since noise is expected in the traces, we learn the weights by
maximizing the likelihood of the traces using MaxEnt-IRL
[16] as follows:

Θ∗ = arg max
Θ

L(D) = arg max
Θ

1

|D|
logP (D|Θ)

= arg max
Θ

1

|D|
∑
G∈G

∑
ζ̂G∈DG

logP (ζ̂G|Θ)

(1)

where D is the training data set, and G the collection of
different scenarios. To simplify the discussion, we keep the
initial state I fixed, and thus the different scenarios can be
indexed by the goal state G. Hence, ζ̂G = (M0, f1,M1,
. . . , fn,Mn) is an explanation for the scenario (I,G) with
a sequence of feature changes provided by human subjects
from the set DG. It consists of the initial human model (i.e.,

M0 = MH), unit feature change and the updated model at
each time step. To mitigate the ambiguity that the distribution
of the traces may introduce preference for some traces over
others, the principle of maximum entropy [16] is employed
for the distribution over all the possible traces for a specific
goal G:

P (ζG|Θ) =
eρ(ζG)∑
ζG
eρ(ζG)

(2)

where

ρ(ζG) = ΘTΨ(ζG) =
∑

(M,M ′)∈ζG

ΘTΨ(M,M ′)

Take Equation 2 into Equation 1, the optimization becomes:

Θ∗ = arg max
Θ

1

|D|
∑
G∈G

∑
ζ̂G∈DG

(
ΘTΨ(ζ̂G)−log

∑
ζG

eΘT Ψ(ζG)
)

(3)
Note that ζ̂G ∈ DG in the first term above represents a

trace in the training set while ζG in the second term refers to
any possible trace of the domain. Since Equation 3 is convex,
we apply a gradient-based method to learn Θ and divide the
traces into transitions as in [16]:

∇ΘL =
1

|D|
∑
G∈G

(∑
(M,M′)∈DG

Ψ(M,M ′)−
∑

(M,M′)∈DG

P (M,M ′|Θ)Ψ(M,M ′)
)

Different from the traditional applications of MaxEnt-
IRL [16], the model distance metric in our work depends
on both the current and next human model. As a result,
P (M,M ′|Θ) above represents the model pair occurrence fre-
quency (MPOF) for a pair (M,M ′), which can be computed
using dynamic programming. If we denote the probability of
occurrence of (M,M ′) at time t as µt(M,M ′), we then have
P (M,M ′|Θ) =

∑
t µt(M,M ′). The updating rules for µt

is as follows:

µ0(M,M ′) = P
(

(M0,M1) = (M,M ′)
)

µt+1(M,M ′) =
∑
f

∑
M ′′

µt(M
′′,M)P (f |M)P (M ′|M,f)

The values for µ0 are initialized to the probability of the state
pair (M,M ′) being the first pair of a trace. The probability
of the occurrence of (M,M ′) at a certain time step then is
calculated based on the occurrence frequency of the previous
state pair, which has M as the second entry in the pair,
any unit feature change f that the robot would explain to
the human while in state M (i.e., according to a stochastic
policy), and the probability that the human model would end
up in M ′ when explaining f in state M according to the
transition function.

The stochastic policy P (f |M) specifies the probability
of explaining f when the human model is M , which is
computed as P (f |M) = P (M,f)

P (M) . Similarly, they can be cal-
culated using dynamic programming as in [16]. µt(M,M ′)
can then be approximated using sampled traces generated by
the stochastic policy and transition function in each iteration.
After learning the parameters for the model distance metric,

we utilize a uniform cost search for a given goal G to retrieve
the best sequence of fi from the initial state by maximizing
the accumulative reward:

ζ∗G = arg max
ζG

∑
(M,M ′)∈ζG

ΘTΨ(M,M ′) (4)

C. Features Selection

We consider both domain dependent and independent
features for learning the model distance metric. Features that
best inform the cognitive effort for interpreting new infor-
mation should be selected. In explanation generation, these
features are specified for each transition, which is associated
with the change of context as a result of unit feature changes.
Hence, each distinct unit feature change is naturally a domain
dependent feature. However, we found them to play a less
prominent role compared to more informative ones used in
our evaluation.

Domain independent features are more difficult to select.
Given our focus on planning tasks, we anticipate that the
change of context is tied to the change of plan as new
information is received. The cognitive effort required in such
cases reflects the difficulty of discovering a new plan based
on the current plan. Hence, we use various plan distances
as domain independent features, which capture how any two
plans differ. In particular, we consider three plan distance
metrics: (1) action distance [25], (2) cost distance, and (3)
Levenshtein distance [29] (i.e., minimum editing distance).
These distances are discussed more formally below. First,
we are given the model reconciliation scenario as a planning
problem specified by (I,G). For any model Mi, we denote
the optimal plan for (I,G) as πi. To simplify the discussion,
we assume there is a single optimal plan only.

Action Distance: The action distance feature represents
the distance between two plans πi and πj obtained un-
der the models Mi and Mj , respectively, or written as

daction(πi, πj) =

∑n
k=1 |Ni(ak)−Nj(ak)|
max(len(πi), len(πj))

where n is the

number of distinct actions in πi and πj considered together,
Ni(ak) is the number of occurrences of action ak in plan
πi, and len(πi) is the length of plan πi.

Cost Distance: The cost distance is the difference between
the cost of plans πi and πj obtained under Mi and Mj ,
respectively: dcost(πi, πj) = |cost∗Mi

(I,G)− cost∗Mj
(I,G)|.

Levenshtein Distance: The Levenshtein distance [29] is
the minimum editing distance between plans πi and πj ,
defined recursively as follows:

dlav(m,n) =


max(m,n) if min(m,n) = 0

min


dlav(m− 1, n) + 1

dlav(m,n− 1) + 1 otherwise.
dlav(m− 1, n− 1) + 1πi[m] 6=πj [n]

where dlav(m,n) is the Levenshtein distance between the
first m actions in πi and first n actions in πj . 1πi[m] 6=πj [n]

returns 0 when πi[m] = πj [n] and 1 otherwise.

V. EVALUATION

We evaluated our approach by conducting human subject
studies using Amazon Mechanical Turk (MTurk) in a syn-
thetic domain called escape-room. This domain is designed
to expose the subjects to moderately complex planning tasks
that require a non-trivial amount of cognitive effort in a short
amount of time. To improve the responses’ quality, we set
the criteria that the worker’s HIT acceptance rate must be
greater than 99% and has been granted MTurk Masters.

Fig. 3: Illustration of the escape-room domain.

A. Escape Room

The task is situated in a damaged nuclear plant represented
as a maze-like environment in Fig. 3. The goal of the
internal agent is to navigate from the starting location S
to the goal location G to escape as fast as possible without
going through dangerous locations. The set of actions in this
domain includes going to each of the gateway cells (i.e.,
marked by an English letter on the top right) from S, and then
to G. Some of the locations with a question mark (see Fig.
3) may be affected by the disaster and become dangerous.
There is also an external agent who knows the locations that
are affected and can communicate with the internal agent
who does not have this information initially. The external
agent can only convey one piece of information at a time
(e.g., D is a danger zone). The states of the 7 locations
with a question mark correspond to 7 contingencies (modeled
as unit feature changes) that can affect the internal agent’s
plan. For domain dependent features, we chose 4 features
related to the maximum (and minimum) relative x and y
positions of the contingency being explained with respect to
the contingencies that have already been explained. We refer
to these features as xmin, xmax, ymax, and ymin.

1) Experimental Design: We designed 8 different sce-
narios for the escape-room domain. We used 5 scenarios
for training and 3 for testing. Each scenario involves a
different set of contingencies, and we ensure that there are
contingencies in the testing scenarios that did not appear in
the training scenarios. During training, the participants were
at first introduced to the domain and informed that they must
act as the external agent to communicate the contingencies
to the internal agent. They were explained that the internal
agent was desperate to escape to give them a sense of urgency
and incentivize them to elucidate the situation. We also asked

Fig. 4: NASA TLX results for testing scenarios

the participants at the beginning about what path the internal
person would take, assuming all the locations marked were
safe. We used the answer to sift the data.

For testing, new participants were invited to play the role
of the internal agent now with automated explanations gener-
ated by different algorithms. We compared the participants’
performance with our progressive explanation generation
method and two baselines, which included one with random
order, and one that used only domain dependent features
to determine the order using our approach. The participants
were asked to complete the task within 4 minutes. Responses
that failed the sanity check question or ran over time were
not used. After the task, the participants were provided the
NASA Task Load standard questionnaire (TLX) [30].

2) Results & Analysis: We created the surveys using
Qualtrics. In the training phase, we recruited 35 participants
on MTurk, out of which 21 responses were used. For testing,
we recruited 163 participants, out of which 87 responses
were used. 58 of our participants were male, and 29 were
female. The average age of our subjects was 38.17 with a
standard deviation of 11.13.

Table I shows the normalized weights Θ for each feature
after IRL as explained in Sec. IV-B. Interestingly, the action
distance and Levenshtein distance maintained the highest
weights. This result aligned with our expectation that the
interpretation of an explanation was a progressive process
and context dependent. On the other hand, the weight for the
cost distance was the lowest, which revealed that cost played
a less important role in determining the cognitive effort.

Feature Category Feature Name Weights

Domain independent
Action Distance 0.44
Cost Distance 0.04
Levenshtein Distance 0.46

Domain dependent
xmin, ymin 0.38, 0.41
xmax, ymax 0.35, 0.39

TABLE I: Normalized feature weights

The subjective results for testing scenarios are presented
in Fig. 4. We can see that our method (PEG) performed
better than the baselines in all NASA TLX metrics. A
statistically significant difference was observed between PEG
and other methods for the (equally) weighted sum of TLX

Fig. 5: Changes of action distance per each unit change

Perform. Effort Frustration
Weighted Sum

Mental Temporal (excluding
Demand Demand Perf.)

Random 63.10 61.96 89.06 59.04 33.96 52.47
PEG 56.19 55.37 90.74 54.11 25.89 41.93

Manhattan 57.43 69.93 85.00 66.86 43.93 58.35

TABLE II: Subjective results for each NASA TLX category

metrics, as shown in Table II. It is clear that our method can
generate more user-friendly explanations (H1) that reduce the
cognitive effort (H2). Objective metrics further confirmed
that our method improved task performance. In particular,
the percentage in which the participants came up with the
correct plan that was safe for the respective methods: : 85.4%
in random, 96.3% in PEG, and 66.7% in Manhattan (H3).

Fig. 5 shows the action distance between the current plan
to the final plan per each unit feature change in one of the
testing scenarios. An interesting observation is that the curve
of PEG seemed smoother, i.e., it appeared to prefer context
changes in one direction (see our motivating scenario for an
example where the context changes in different directions).
This intuitively makes sense since context change in different
directions only increases the extent of changes needed later.

VI. CONCLUSIONS

In this paper, we studied the problem of PEG. We took a
step further from the prior work by considering not only the
right explanation for the explainee, but also the underlying
cognitive effort required for understanding the explanation.
To learn the order for communicating information that assists
understanding, we adopted a goal-based MDP and applied
IRL to learn the reward function based on traces, which is
then used to generate explanations. We showed that order for
communicating information indeed mattered! First, we noted
strong weights for domain independent features, suggesting
that the cognitive effort for interpreting an explanation was
tightly coupled with the context changes as new information
was received progressively. Finally, we showed that PEG did
improve task performance and reduce cognitive load.

ACKNOWLEDGEMENT

We thank the anonymous reviewers for their helpful
comments. This research is supported in part by the NSF
grant IIS-1844524, the NASA grant NNX17AD06G, and the
AFOSR grant FA9550-18- 1-0067.

REFERENCES

[1] T. Chakraborti, S.Kambhampati, M.Scheutz, and Y. Zhang, “Ai chal-
lenges in human-robot cognitive teaming,” 2017.

[2] N. J. Cooke, “Team cognition as interaction,” Current directions in
psychological science, vol. 24, no. 6, pp. 415–419, 2015.

[3] T. Lombrozo, “The structure and function of explanations,” Trends in
cognitive sciences, vol. 10, no. 10, pp. 464–470, 2006.

[4] M. R. Endsley, “Design and evaluation for situation awareness en-
hancement,” in Proceedings of the Human Factors Society annual
meeting, vol. 32. SAGE Publications Sage CA: Los Angeles, CA,
1988, pp. 97–101.

[5] M. Göbelbecker, T. Keller, P. Eyerich, M. Brenner, and B. Nebel,
“Coming up with good excuses: What to do when no plan can be
found,” in ICAPS, 2010.

[6] M. Hanheide, M. Göbelbecker, G. S. Horn, A. Pronobis, K. Sjöö,
A. Aydemir, P. Jensfelt, C. Gretton, R. Dearden, M. Janicek, et al.,
“Robot task planning and explanation in open and uncertain worlds,”
AIJ, vol. 247, pp. 119–150, 2017.

[7] S. Sohrabi, J. A. Baier, and S. A. McIlraith, “Preferred explanations:
Theory and generation via planning,” in AAAI, 2011.

[8] T. Chakraborti, A. Kulkarni, S. Sreedharan, D. E. Smith,
and S. Kambhampati, “Explicability? legibility? predictability?
transparency? privacy? security? the emerging landscape of
interpretable agent behavior,” in Proceedings of the Twenty-
Ninth International Conference on Automated Planning and
Scheduling, ICAPS 2018, Berkeley, CA, USA, July 11-15, 2019,
J. Benton, N. Lipovetzky, E. Onaindia, D. E. Smith, and
S. Srivastava, Eds. AAAI Press, 2019, pp. 86–96. [Online].
Available: https://aaai.org/ojs/index.php/ICAPS/article/view/3463

[9] T. Chakraborti, S. Sreedharan, Y. Zhang, and S. Kambhampati, “Plan
explanations as model reconciliation: Moving beyond explanation as
soliloquy. ijcai (2017), 156–163,” 2017.

[10] M. Zakershahrak, Z. Gong, N. Sadassivam, and Y. Zhang, “Online
explanation generation for planning tasks in human-robot teaming,”
in International Conference on Intelligent Robots and Systems, 2020.

[11] K. A. Ericsson and J. Smith, Toward a general theory of expertise:
Prospects and limits. Cambridge University Press, 1991.

[12] D. Kahneman, Thinking, fast and slow. Macmillan, 2011.
[13] C. V. Schwarz, B. J. Reiser, E. A. Davis, L. Kenyon, A. Achér,

D. Fortus, Y. Shwartz, B. Hug, and J. Krajcik, “Developing a learn-
ing progression for scientific modeling: Making scientific modeling
accessible and meaningful for learners,” Journal of Research in
Science Teaching: The Official Journal of the National Association
for Research in Science Teaching, vol. 46, no. 6, pp. 632–654, 2009.

[14] A. Y. Ng and S. J. Russell, “Algorithms for inverse reinforcement
learning,” in ICML. Morgan Kaufmann Publishers Inc., 2000, pp.
663–670.

[15] P. Abbeel and A. Y. Ng, “Apprenticeship learning via inverse rein-
forcement learning,” in Proceedings of the twenty-first ICML. ACM,
2004, p. 1.

[16] B. D. Ziebart, A. Maas, J. A. Bagnell, and A. K. Dey, “Maxi-
mum entropy inverse reinforcement learning,” in Proceedings of the
23rd National Conference on Artificial Intelligence - Volume 3, ser.
AAAI08. AAAI Press, 2008, p. 14331438.

[17] D. Gunning, “Explainable artificial intelligence (xai),” Defense Ad-
vanced Research Projects Agency (DARPA), nd Web, vol. 2, 2017.

[18] P. Langley, B. Meadows, M. Sridharan, and D. Choi, “Explainable
agency for intelligent autonomous systems,” in IAAI, 2017.

[19] M. R. Endsley, Designing for situation awareness: An approach to
user-centered design. CRC press, 2016.

[20] C. W. Langfred, “Too much of a good thing? negative effects of high
trust and individual autonomy in self-managing teams,” Academy of
management journal, vol. 47, no. 3, pp. 385–399, 2004.

[21] A. D. Dragan and S. S. Srinivasa, “Gen-
erating legible motion,” 2013. [Online]. Available:
http://www.roboticsproceedings.org/rss09/p24.html

[22] Y. Zhang, S. Sreedharan, A. Kulkarni, T. Chakraborti, H. H. Zhuo,
and S. Kambhampati, “Plan explicability and predictability for robot
task planning,” in ICRA. IEEE, 2017.

[23] M. Zakershahrak, A. Sonawane, Z. Gong, and Y. Zhang, “Interactive
plan explicability in human-robot teaming,” in RO-MAN). IEEE,
2018, pp. 1012–1017.

[24] Z. Gong and Y. Zhang, “Behavior explanation as intention signaling
in human-robot teaming,” in RO-MAN. IEEE, 2018, pp. 1005–1011.

[25] M. Fox, A. Gerevini, D. Long, and I. Serina, “Plan stability: Replan-
ning versus plan repair.” in ICAPS, vol. 6, 2006, pp. 212–221.

[26] M. Likhachev, D. I. Ferguson, G. J. Gordon, A. Stentz, and S. Thrun,
“Anytime dynamic a*: An anytime, replanning algorithm.” in ICAPS,
vol. 5, 2005, pp. 262–271.

[27] M. Fox and D. Long, “Pddl2. 1: An extension to pddl for expressing
temporal planning domains,” JAIR, vol. 20, pp. 61–124, 2003.

[28] R. E. Fikes and N. J. Nilsson, “Strips: A new approach to the
application of theorem proving to problem solving,” AIJ, vol. 2, no.
3-4, pp. 189–208, 1971.

[29] V. Levenshtein, “Binary codes capable of correcting deletions, inser-
tions, and reversals,” in Soviet physics doklady, vol. 10, no. 8, 1966,
pp. 707–710.

[30] NASA, “Nasa task load index,”
https://humansystems.arc.nasa.gov/groups/TLX/, Jan. 2020.

