
MINIMALITY IN MULTI-ROBOT SYSTEMS

Yu ("Tony") Zhang Arizona State University

Tempe, AZ 85283 Sunday Partly Cloudy

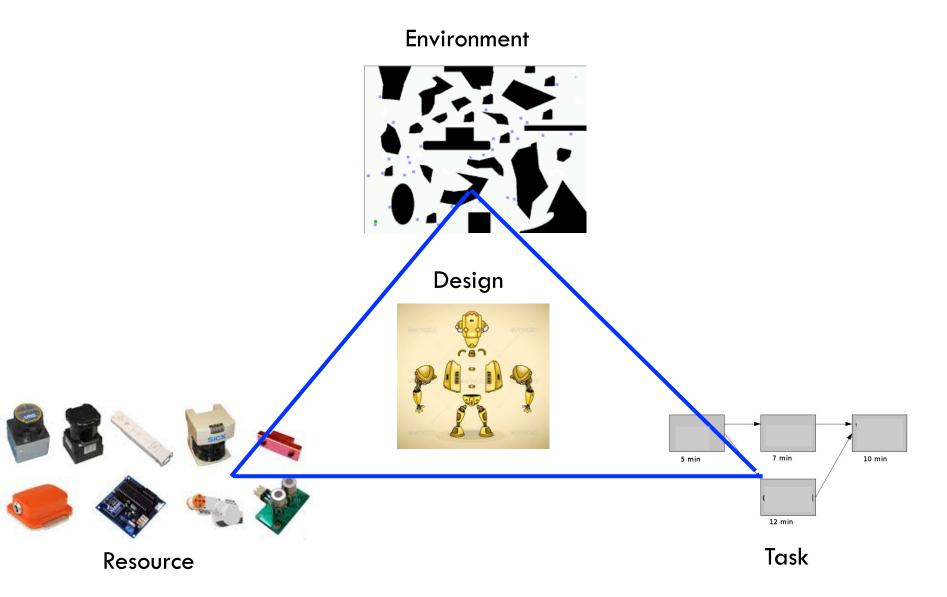
Precipitation: 0% Humidity: 5% Wind: 10 mph

Excessive Heat Warning

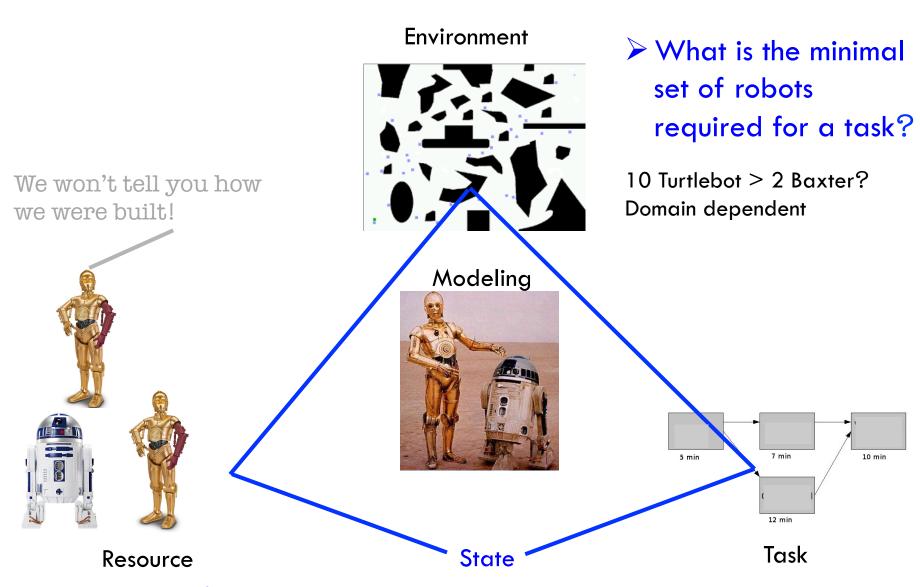
Central Arizona

9 hours ago - National Weather Service

remains in effect from 10 AM MST /10 AM pdt/ Sunday to 9 PM MST /9 PM pdt/ Wednesday ... Temperature: highs Sunday and Monday of 115 to 120 degrees ... illness will be likely ...



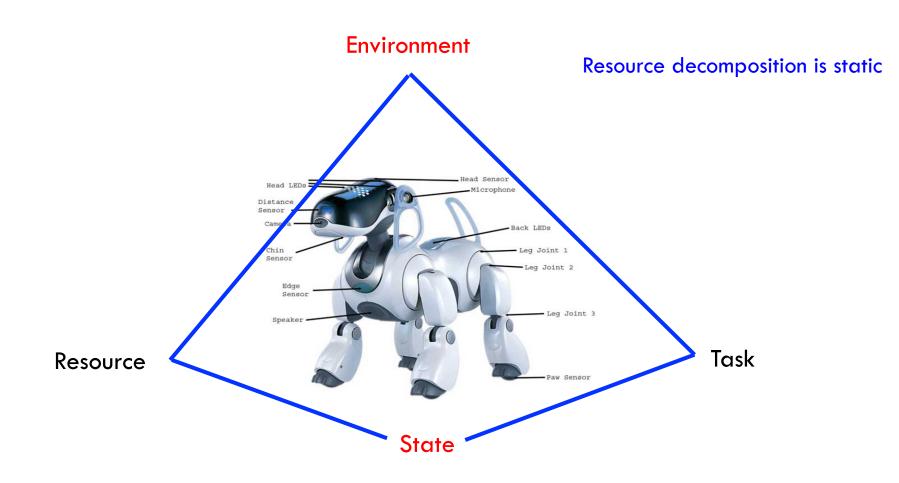
Very Good


During AAAI 2016 in winter!

7	8	9	10	11	12	13
Actual Temp	Actual Temp	Actual Temp	Actual Temp	Actual Temp	Actual Temp	Actual Temp
79° Lo 47°	85° _{Lo} 50°	86° _{Lo} 59°	86° _{Lo} 54°	85° _{Lo 55°}	87° _{Lo 55°}	87° _{Lo 53°}
Hist. Avg. 70° Lo 48°	Hist. Avg. 70° Lo 48°	Hist. Avg. 70° Lo 48°	Hist. Avg. 70° Lo 48°	Hist. Avg. 70° Lo 48°	Hist. Avg. 70° Lo 48°	Hist. Avg. 70° Lo 48°
14	15	16	17	18	19	20
Actual Temp	Actual Temp	Actual Temp	Actual Temp	Actual Temp	Actual Temp	Actual Temp
82° Lo 52°	85° Lo 52°	87° _{Lo} 55°	90° _{Lo} 57°	82° Lo 57°	81° Lo 59°	86° _{Lo} 54°
Hist. Avg. 70° Lo 48°	Hist. Avg. 71° Lo 49°	Hist. Avg. 71° Lo 49°	Hist. Avg. 72° Lo 50°			

Minimality in single-robot systems

What is minimality in multi-robot systems?



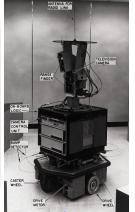
Important for task allocation and scheduling etc.

- 1. Agent functional (capability) representation
 - a. Resource, action, behavior based decompositions
- 2. Minimal set of robots for action based agent decomposition
- 3. Minimal set of robots for mixed agent decompositions

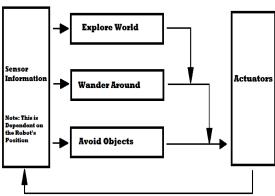
- Agent functional (capability) representation
 Resource, action, behavior based decompositions
- 2. Minimal set of robots for action based agent decomposition
- 3. Minimal set of robots for mixed agent decompositions

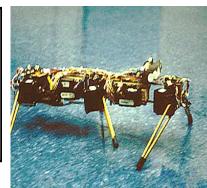
Resource based agent functional decomposition

Action and behavior based agent functional


decomposition

Proactive agent

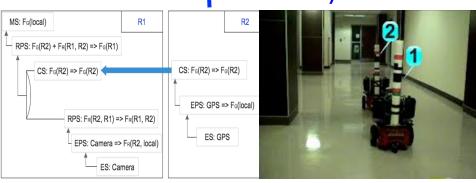

Sensors
What the world is like now
What my actions do
What it will be like if I do action A


What action I

should do now

Reactive agent

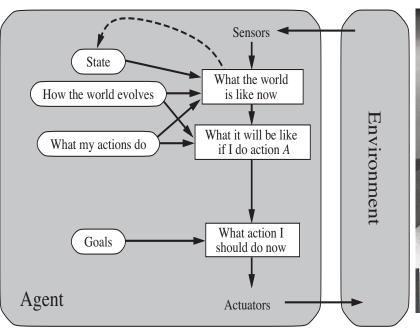
- ➤ Atomic: MDP/POMDP
- Factored: STRIPS, RDDL,

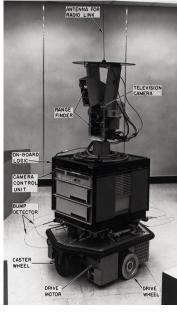

HTN

Goals

Agent

- World model
- Non-local
- Goal-oriented
- Interpretable


- Subsumption
- Motor Schema based
 - Simplicity
 - Computationally tractable
 - Robust against failures


- > Layered architecture
 - Automatic composition and flexible coordination
 - Information sharing

Agent with mixed decompositions

- 1. Agent functional (capability) representation
 - a. Resource, action, behavior based decompositions
- 2. Minimal set of robots for action based agent decomposition
- 3. Minimal set of robots for mixed agent decompositions

Action based agent decomposition

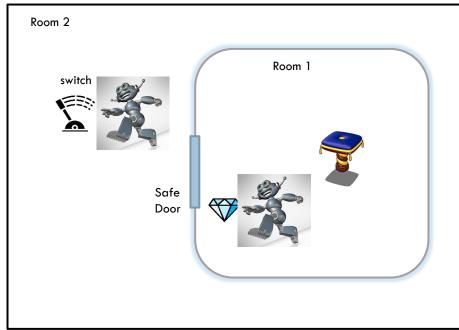
- ➤ Atomic: MDP/POMDP
- Factored: STRIPS, RDDL, HTN
 - World model
 - Non-local
 - Goal-oriented
 - Interpretable

Expensive representation PSPACE-complete

What is the minimal set of robots required for a task?

Simplifications:

Sequential action


• Instantaneous execution (deadline)

What causes required cooperation

What is the minimal set of robots required for a task? Simplifications:

- Sequential action
- Instantaneous execution

The analysis of the causes of required cooperation allows us to provide upper bounds

- 1. Agent functional (capability) representation
 - a. Resource, action, behavior based decompositions
- 2. Minimal set of robots for action based agent decomposition
- 3. Minimal set of robots for mixed agent decompositions

Agent with mixed decompositions

- Layered architecture,
 - Automatic composition and flexible coordination
 - Information sharing

E.g., IQ-ASyMTRe

Built upon motor schema based architecture

> What is the minimal set of robots required for a task?

No world model – environment and state must be considered based only on local information, which together forms a team quality measure

Combine local information to form team quality measure

E.g., coverage, uncertainty etc.

Team quality measure provides answers in dynamic environment using only local information

Summary

- 1. Agent functional (capability) representation
 - a. Resource, action, behavior based decompositions
- 2. Minimal set of robots for action based decomposition
- The analysis of the causes of required cooperation allows us to provide upper bounds
- 3. Minimal set of robots for mixed agent decomposition
- Team quality measure provides answers in dynamic environment using only local information