

IQ-ASyMTRe: Synthesizing Coalition Formation and Execution for Tightly-Coupled Multirobot Tasks

Yu ("Tony") Zhang Lynne E. Parker

Distributed Intelligence Laboratory Electrical Engineering and Computer Science Department University of Tennessee, Knoxville TN, USA

> IEEE/RSJ International Conference on Intelligent Robots and Systems, 2010

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

Background Motivation Contributions

About multirobot tasks

Problem	Solutions		
Coalition Formation	Mainly for loosely-coupled		COBOS [Fua and Ge, 2005]
			MR co. form. [Vig and Adams, 2006]
Coalition Formation	Tightly-coupled		Hoplites [Kalra et al., 2005]
	(req. tight coord.)	Capability sharing	ASyMTRe [Parker and Tang, 2006]
Coalition Execution	IQ based approach [Zhang and Parker, 2010] (ICRA)		
Formation + Execution	Previously Unavailable In this paper: how to Extend ASyMTRe and Combine with IQ?		

Y. Zhang and L.E. Parker

IQ-ASyMTRe for Tightly-Coupled Multirobot Tasks

イロト 不得 とくほ とくほとう

Background Motivation Contributions

Tightly-coupled multirobot tasks

- Heterogeneous robots with different capabilities
- Individual robots incapable of accomplishing the task

(a) [Gerkey and Mataric, 2001]

(b) [Parker and Tang, 2006]

(ロ) (四) (ヨ) (ヨ) (ヨ)

Background Motivation Contributions

Requirements for achieving the tasks

(a) [Gerkey and Mataric, 2001]

(b) [Parker and Tang, 2006]

(ロ) (四) (ヨ) (ヨ) (ヨ)

Background Motivation Contributions

Requirements for achieving the tasks

Coalition formation:

Use ASyMTRe to enable capability sharing

(a) [Gerkey and Mataric, 2001]

(b) [Parker and Tang, 2006]

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

Background Motivation Contributions

Requirements for achieving the tasks

Coalition formation:

• Use ASyMTRe to enable capability sharing

Coalition execution:

• Use the IQ approach to satisfy sensor constraints introduced

(a) [Gerkey and Mataric, 2001]

(b) [Parker and Tang, 2006]

(ロ) (四) (ヨ) (ヨ) (ヨ)

Background Motivation Contributions

Requirements for achieving the tasks

Coalition formation:

• Use ASyMTRe to enable capability sharing

Coalition execution:

• Use the IQ approach to satisfy sensor constraints introduced

(a) [Gerkey and Mataric, 2001]

(b) [Parker and Tang, 2006]

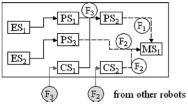
(日) (四) (三) (三) (三)

Background Motivation Contributions

Coalition formation

ASyMTRe [Parker and Tang, 2006] divides robot capabilities into:

- Motor Schema (MS)
- Environmental Sensor (ES)
- Perceptual Schema (PS)
- Communication Schema (CS)


イロト イポト イヨト イヨト

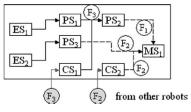
Background Motivation Contributions

Coalition formation

ASyMTRe [Parker and Tang, 2006] divides robot capabilities into:

- Motor Schema (MS)
- Environmental Sensor (ES)
- Perceptual Schema (PS)
- Communication Schema (CS)

(a) [Parker and Tang, 2006]


イロト イポト イヨト イヨト

Background

Coalition formation

ASyMTRe [Parker and Tang, 2006] divides robot capabilities into:

- Motor Schema (MS)
- ۲ Environmental Sensor (ES)
- Perceptual Schema (PS) ۲
- Communication Schema (CS) ٠

(a) [Parker and Tang, 2006]

Capability sharing is implicitly achieved

ъ

Background Motivation Contributions

Requirements for achieving the tasks

Coalition formation:

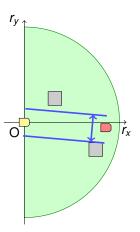
• Use ASyMTRe to enable capability sharing

Coalition execution:

• Use the IQ approach to satisfy sensor constraints introduced

(a) [Gerkey and Mataric, 2001]

(b) [Parker and Tang, 2006]

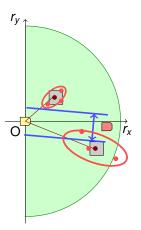

◆□▶ ◆□▶ ★ □▶ ★ □▶ → □ → の Q ()

Background

Coalition execution

An information quality based approach [Zhang and Parker, 2010] (ICRA) for satisfying sensor constraints through:

- Computing the information quality measure based on:
 - sensor characteristics

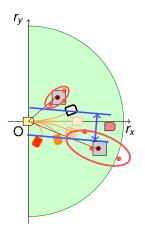

э

Background

Coalition execution

An information quality based approach [Zhang and Parker, 2010] (ICRA) for satisfying sensor constraints through:

- Computing the information quality measure based on:
 - sensor characteristics
 - environmental influence


э

Background Motivation Contributions

Coalition execution

An information quality based approach [Zhang and Parker, 2010] (ICRA) for satisfying sensor constraints through:

- Computing the information quality measure based on:
 - sensor characteristics
 - environmental influence
- Selecting motion that leads to the best information quality measure

Introduction IQ-ASyMTRe Results

Motivation

Combining the two approaches

For coalition formation, use ASyMTRe to:

Search coalition solution

For coalition execution, use the IQ based approach to:

Maintain sensor constraints

Background Motivation Contributions

Combining the two approaches

For coalition formation, use ASyMTRe to:

Search coalition solution

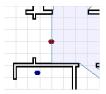
For coalition execution, use the IQ based approach to:

Maintain sensor constraints

However, 2 = 1 + 1?

イロン 不得 とくほ とくほ とうほ

Introduction IQ-ASyMTRe Results


Motivation

Challenges

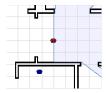
Limitations of ASyMTRe for task execution:

(a) Incomplete definition of information type

In the robot navigation task:

(a) Irretrievable information

Introduction IQ-ASyMTRe Results


Motivation

Challenges

Limitations of ASyMTRe for task execution:

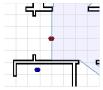
- Incomplete definition of information type (a)
- (b) Application specific design of PSs

In the robot navigation task:

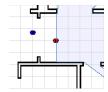
(a) Irretrievable information

(b) Leader at back

ъ


Background Motivation Contributions

Challenges


Limitations of ASyMTRe for task execution:

- (a) Incomplete definition of information type
- (b) Application specific design of PSs
- (c) Inconsideration of environmental influence

In the robot navigation task:

(a) Irretrievable information

(b) Leader at back

(c) Environmental influence

ヘロト ヘワト ヘビト ヘビト

э

Background Motivation Contributions

Contributions

- Associating referents with information
 - provides a complete definition of information type

Guarantees the feasibility of solutions

Introducing information conversions
 provides more flexibility

Avoids application specific PS design

- Combining ASyMTRe and the IQ approach
 - enables dynamic coalition formation and execution

Achieves a general solution for tightly-coupled multirobot tasks

ヘロア 人間 アメヨア 人口 ア

э

Introduction IQ-ASyMTRe Results

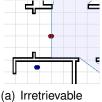
Extensions of Representation

A complete definition of information type

 $F_i(Ref_{1:N_i})$:

- N_i is the number of referents for F_i
- Ref_i is the *j*th referent for F_i

For example: $F_G(X)$, $F_G(r_{red})$


Extensions of Representation Incorporation of information quality Coalition formation and execution

A complete definition of information type

 $F_i(Ref_{1:N_i})$:

- N_i is the number of referents for F_i
- Ref_j is the jth referent for F_i

For example: $F_G(X)$, $F_G(r_{red})$

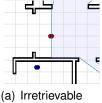
information

$$F_R(r_{blue}, r_{red})$$
 retrievable?

Y. Zhang and L.E. Parker

ヘロア 人間 アメヨア 人口 ア

ъ


Extensions of Representation Incorporation of information quality Coalition formation and execution

A complete definition of information type

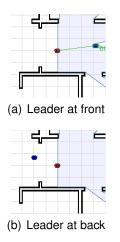
 $F_i(Ref_{1:N_i})$:

- N_i is the number of referents for F_i
- Ref_j is the jth referent for F_i

For example: $F_G(X)$, $F_G(r_{red})$

information

$F_R(r_{blue}, r_{red})$ retrievable? A complete reference of information


Y. Zhang and L.E. Parker


IQ-ASyMTRe for Tightly-Coupled Multirobot Tasks

Extensions of Representation Incorporation of information quality Coalition formation and execution

Information conversions

ASyMTRe requires application specific PS design:

(c) [Parker and Tang, 2006]

ヘロト 人間 とくほとく ほとう

э

Introduction IQ-ASyMTRe Results

Extensions of Representation

Information conversions

Table: COMMON INFORMATION CONVERSIONS

$egin{array}{l} F_G(X)+F_R(Y,X) ightarrow F_G(Y) \end{array}$	global + relative \rightarrow global
$F_R(Y,X) ightarrow F_R(X,Y)$	$\text{relative} \rightarrow \text{relative}$
$F_R(X,Z) + F_R(Y,Z) ightarrow F_R(X,Y)$	relative + relative \rightarrow relative

ъ

Extensions of Representation Incorporation of information quality Coalition formation and execution

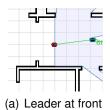
Information conversions

Table: COMMON INFORMATION CONVERSIONS

$egin{array}{c} F_G(X)+F_R(Y,X) ightarrow F_G(Y) \end{array}$	global + relative \rightarrow global
${\mathcal F}_R(Y,X) o {\mathcal F}_R(X,Y)$	$\text{relative} \rightarrow \text{relative}$
$F_R(X,Z) + F_R(Y,Z) ightarrow F_R(X,Y)$	relative + relative \rightarrow relative

- $F_G(X) + F_R(Y, X) \rightarrow F_G(Y)$
- $F_R(X,Z) + F_R(Y,Z) \rightarrow F_R(X,Y)$

・ロト ・ 理 ト ・ ヨ ト ・


3

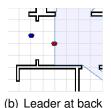
Extensions of Representation Incorporation of information quality Coalition formation and execution

Information conversions

Table: COMMON INFORMATION CONVERSIONS

$egin{array}{c} F_G(X)+F_R(Y,X) ightarrow F_G(Y) \end{array}$	global + relative \rightarrow global
${old F_R}(Y,X) o {old F_R}(X,Y)$	$\text{relative} \rightarrow \text{relative}$
$egin{array}{c} F_R(X,Z)+F_R(Y,Z) ightarrow F_R(X,Y) \end{array}$	relative + relative \rightarrow relative

• Leader at front: CS: $F_G(r_{blue})$ + Camera: $F_R(r_{blue}, r_{red})$


ヘロア 人間 アメヨア 人口 ア

Extensions of Representation Incorporation of information quality Coalition formation and execution

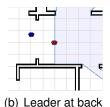
Information conversions

Table: COMMON INFORMATION CONVERSIONS

$egin{array}{c} F_G(X)+F_R(Y,X) ightarrow F_G(Y) \end{array}$	global + relative \rightarrow global
${\mathcal F}_R(Y,X) o {\mathcal F}_R(X,Y)$	$\text{relative} \rightarrow \text{relative}$
$F_R(X,Z) + F_R(Y,Z) ightarrow F_R(X,Y)$	relative + relative \rightarrow relative

 Leader at back: CS: F_G(r_{blue}) + CS: F_R(r_{red}, r_{blue})

ヘロン ヘアン ヘビン ヘビン


ъ

Extensions of Representation Incorporation of information quality Coalition formation and execution

Information conversions

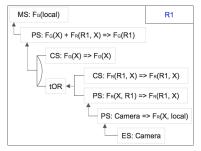
Table: COMMON INFORMATION CONVERSIONS

$egin{array}{c} F_G(X)+F_R(Y,X) ightarrow F_G(Y) \end{array}$	global + relative \rightarrow global
${old F_R}(Y,X) o {old F_R}(X,Y)$	$\text{relative} \rightarrow \text{relative}$
$egin{array}{c} F_R(X,Z)+F_R(Y,Z) ightarrow F_R(X,Y) \end{array}$	relative + relative \rightarrow relative

 Leader at back: CS: F_G(r_{blue}) + CS: F_R(r_{red}, r_{blue})

Information conversions provide more flexibility

Y. Zhang and L.E. Parker

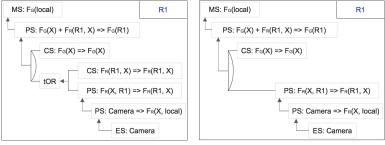

IQ-ASyMTRe for Tightly-Coupled Multirobot Tasks

ヘロア 人間 アメヨア 人口 ア

Introduction IQ-ASyMTRe Results

Extensions of Representation

Solution space and potential solutions

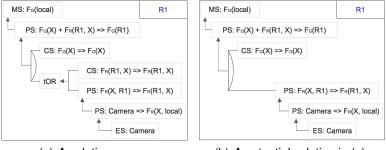


(a) A solution space

ъ

Extensions of Representation Incorporation of information quality Coalition formation and execution

Solution space and potential solutions


(a) A solution space

(b) A potential solution in (a)

イロト イポト イヨト イヨト

Extensions of Representation Incorporation of information quality Coalition formation and execution

Solution space and potential solutions

(a) A solution space

(b) A potential solution in (a)

Additional schema connection constraints are introduced.

イロト イポト イヨト イヨト

э

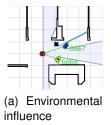
Introduction IQ-ASyMTRe Results

Incorporation of information quality

IQ for information type

 $Q_i(Conf_{1:N_i})$ returns the IQ measure for F_i , given:

- Conf_{1:N}, configurations for Ref_{1:N}
- Current environment settings in the sensor's FOV

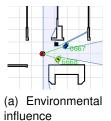

ъ

Incorporation of information quality

IQ for information type

 $Q_i(Conf_{1:N_i})$ returns the IQ measure for F_i , given:

- Conf_{1:N}, configurations for Ref_{1:N}
- Current environment settings in the sensor's FOV


э

Extensions of Representation Incorporation of information quality Coalition formation and execution

IQ for information type

 $Q_i(Conf_{1:N_i})$ returns the IQ measure for F_i , given:

- Conf_{1:N_i}, configurations for Ref_{1:N_i}
- Current environment settings in the sensor's FOV

Enables dynamic-environment reasoning for coalition formation

ヘロト ヘワト ヘビト ヘビト

э

Extensions of Representation Incorporation of information quality Coalition formation and execution

Algorithm outline

 while true do if a coalition is set up then if IQ is fairly high then Execute goal command. else if IQ is too low then Break the current coalition. 	
else	
Execute the chosen motion increase the IQ. end if	i to – – Maintain sensor constraints
else	
Search for a potential solution Set up a coalition. end if end while	n. – – Dynamic coalition Formation
	<□> <四> <四> <三> <三> <三> <三

Extensions of Representation Incorporation of information quality Coalition formation and execution

Challenges - summary

- To provide a complete definition of information type
 - Associate referents with information types
- To avoid application specific design of PSs
 - Introduce information conversions
- To consider environmental influence
 - Incorporate information quality

Simulation Physical Experiment

Simulation – solution space

Table: COMMON INFORMATION CONVERSIONS

$F_G(X) + F_R(Y,X) \rightarrow F_G(Y)$	global + relative \rightarrow global
$F_R(Y,X) ightarrow F_R(X,Y)$	relative \rightarrow relative

Table: ROBOT NAVIGATION TASK

Fiducial Only	Fiducial & Laser
	1. ES: <i>F_G(local</i>)
1. $\text{CS:}F_G(X)$, $\text{ES:}F_R(X, \text{local})$	2. $CS:F_G(X)$, $ES:F_R(X, local)$
2 . $CS:F_G(X)$, $CS:F_R(local, X)$	3. $CS:F_G(X)$, $CS:F_R(local, X)$
3. $CS:F_G(X)$, $CS:F_R(X, local)$	4. $CS:F_G(X)$, $CS:F_R(X, local)$
4. $CS:F_G(X)$, $CS:F_R(local, X)$	5. $CS:F_G(X)$, $CS:F_R(local, X)$

ъ

Simulation Physical Experiment

Simulation – solution space

Add in: $F_R(X, Z) + F_R(Y, Z) \rightarrow F_R(X, Y)$

Table: ROBOT NAVIGATION TASK

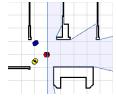
Fiducial & Laser	
1. ES: <i>F_G</i> (<i>local</i>)	
2. $CS:F_G(X)$, $ES:F_R(X, local)$	
3. $\text{CS:}F_G(X)$, $\text{CS:}F_R(\text{local}, X)$	
4. $\text{CS:}F_G(X)$, $\text{CS:}F_R(X, \textit{local})$	
5. $CS:F_G(X), CS:F_R(local, X)$	
6. $\text{CS:}F_G(X)$, $\text{CS:}F_R(\text{local}, Y)$, $\text{CS:}F_R(X, Y)$	
7. $CS:F_G(X)$, $CS:F_R(X, Y)$, $CS:F_R(local, Y)$	

イロン 不得 とくほ とくほ とうほ

Simulation Physical Experiment

Simulation – environment reasoning

Environment reasoning ability


Fiducial

1.
$$\text{CS:}F_G(X)$$
, $\text{ES:}F_R(X, \text{local})$

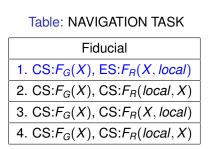
2. $CS:F_G(X)$, $CS:F_R(local, X)$

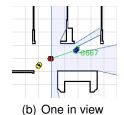
3. $CS:F_G(X)$, $CS:F_R(X, local)$

4. $CS:F_G(X)$, $CS:F_R(local, X)$

(a) No robot in view

 $F_G(X) + F_R(r_{red}, X)$


イロト イポト イヨト イヨト

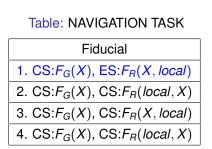

ъ

Simulation Physical Experiment

Simulation – environment reasoning

Environment reasoning ability

 $F_G(r_{blue})$


ヘロト 人間 ト ヘヨト ヘヨト

ъ

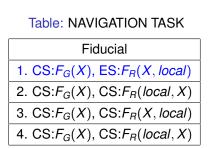
Simulation Physical Experiment

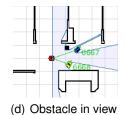
Simulation – environment reasoning

Environment reasoning ability

(c) Two in view

 $F_G(r_{blue})$ or $F_G(r_{yellow})$

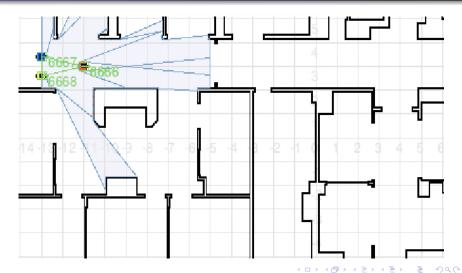

ヘロト 人間 ト ヘヨト ヘヨト


ъ

Simulation Physical Experiment

Simulation – environment reasoning

Environment reasoning ability


 $F_G(r_{vellow})$

ヘロト ヘアト ヘビト ヘビト

ъ

Simulation

Dynamic coalition formation and execution

Physical Experiment

Physical experiment – navigation task

Flexibility of information conversions

Leader at front

Leader at back

ъ

Contributions

- Associating referents with information
 - provides a complete definition of information type

Guarantees the feasibility of solutions

Introducing information conversions
 provides more flexibility

Avoids application specific PS design

- Combining ASyMTRe and the IQ approach
 - enables dynamic coalition formation and execution

Achieves a general solution for tightly-coupled multirobot tasks

ヘロト ヘワト ヘビト ヘビト

References

Fua, C. and Ge, S. (2005).

COBOS: Cooperative backoff adaptive scheme for multirobot task allocation.

IEEE Transactions on Robotics, 21(6):1168–1178.

Gerkey, B. and Mataric, M. (2001).

Sold!: Auction methods for multi-robot coordination.

IEEE Transactions on Robotics and Automation, Special Issue on Multi-robot Systems.

Kalra, N., Ferguson, D., and Stentz, A. (2005).

Hoplites: A market-based framework for planned tight coordination in multirobot teams.

In Proc. of the IEEE Int'l. Conf. on Robotics and Automation.

Parker, L. and Tang, F. (2006).

э

Building multirobot coalitions through automated task solution synthesis.

Proc. of the IEEE, 94(7):1289-1305.

Vig, L. and Adams, J. (2006).

Multi-robot coalition formation.

IEEE Transactions on Robotics, 22(4):637–649.

Zhang, Y. and Parker, L. (2010).

A general information quality based approach for satisfying sensor constraints in multirobot tasks.

In IEEE International Conference on Robotics and Automation.

ヘロン 人間 とくほ とくほ とう

3