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Problems we are interested in

Gerkey’s taxonomy of robot problems [Gerkey and Mataric, 2004]:

single-task (ST) or multitask (MT) ROBOT

single-robot (SR) or multirobot (MR) TASK

instantaneous (IA) or time-extended (TA) ASSIGNMENT

Multirobot (MR) tasks can be:

loosely coupled

tightly coupled
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An unaddressed issue

Sensor constraints may be established.

For example:

(a) [Gerkey and Mataric, 2001] (b) [Parker and Tang, 2006]
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Questions that need answers

How to keep these sensor constraints satisfied?

What if certain sensor constraints are unsatisfiable?
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Issues to consider
Issues:

Non-optimal initial configurations

Environmental influence

Unsatisfiable sensor constraint

For example:

Initial configuration is not

optimal for the red robot

Dynamic environmental

factor imposes potential risk

Constraint may potentially

become unsatisfiable
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No general answer is provided

Robot deployment task [Howard et al., 2006]
Fragile to uncertainty and dynamic environmental factors

Target tracking task [Bandyopadhyay et al., 2006] (ICRA)
Optimal but application specific

Robot insertion task [Sujan and Dubowsky, 2005]
Unscalable and application specific
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Contributions – a general approach

Local measures of information quality
– enables flexible robot control

Scalable and general

Environment and uncertainty sampling
– incorporates environmental influence and sensor uncertainty

General

Constraint model
– enables dynamic formation control in robot navigation task

Semi-autonomous
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Environment and Uncertainty Sampling
Measures of Information Quality
Constraint Model

Sensor characterization for constraint satisfaction

The model, Is : X → [0,1].

X is the constrainee’s sensor’s local space.

A score is assigned to every constrainer’s configuration in X .

For example,

Is(x(l, θ)) = a∗ lmax − l
lmax

+(1.0−a)∗θmax − |θ|
θmax

in which a is a weighting factor
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To incorporate environmental influence

Environment samples, S : {s1, s2, ..., sn}.

Apply a k-means clustering algorithm on
range sensor readings

Choose a granularity for sample creation

Uncertainty samples for si , Si : {s1
i , s2

i , ..., sM
i }.

An example sensor uncertainty model:

Us(x(l′, θ′) | x(l, θ)) ∼ N((l , θ), MΣsMT )

M =

[
|l − l ′| 0

0 |θ − θ′|

]

O rx

ry

s1

s3
7
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The combined measures

Samples from the constrainer. For each si ,

if within c from the constrainer, ηi = 1;

otherwise, compute
ηi = Us(xsi | xcr )/Z , (Z = Us(xcr ± c | xcr ))

Compute weights for sensor quality measures:

for each s j
i , compute h j

i = Hs(xs j
i
| xcr );

then compute ri = Capp(h1
i , h2

i , ... h
M
i )

compute w =
∏

i (1.0− ri ∗ (1.0− ηi ))

Measures of information quality: ı = ıs ∗ w

O
rx

ry

Constrainer

η1 = 1.0

Risk Range

r2 = 1/3

h1
2 = 1.0
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Finding alternative solutions

Constraint relaxation:

(a) Initial: Ry → Rr (b) Relaxed: Ry → Rb → Rr

As long as constraints form a connected graph: e.g., Ry → Rb → Rr

ıRy Rr = Lapp(ıRy→Rb , ıRb→Rr )
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The Overall Algorithm
sample the motion vector, V : {v1, v2, ... vD}
while true do

sample the environment, S : {s1, s2, ..., sn}
find candidate constrainer configuration xcr
for all si in S do

compute the likelihood ηi = Us(xsi | xcr )/Z
sample using the sensor uncertainty model of the
range sensor, Si : {s1

i , ... sM
i }

end for
for all vk in V do

predict new configuration xk
cr = Fm(xcr , vk )

compute ıks = Is(xcr )
for all si in S do

for all sj
i in Si do

compute (hj
i )

k = Hs(x
sj
i
| xcr )

end for
compute rk

i = Capp((h1
i )k , (h2

i )k , ...(hM
i )k )

end for
compute the weight for the sensor quality measure
wk =

Q
i (1.0− rk

i ∗ (1.0− ηi ))

compute ık = ıks ∗ wk

end for
find ı∗ = maxD

i=1(ıi )
if indirectly satisfied then

compute ı∗ = Lapp(Pathalt )
end if
if ı∗ >= a threshold then

return v∗ (corresponding to ı∗)
end if
search for alternative solution using constraint model
if no alternative solution found then

return failure
end if

end while

O rx

ry

Risk Range

r2 = 1/3
h1

2 = 1.0

Motion model: r = v/ω
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Overview of results

Simulations:

Robot tracking task
– behavior and statistical comparison

Robot navigation task
– 10 sets of random initial configurations

Physical experiments:

Robot tracking task
– performance comparison and behavior analysis

Robot navigation task
– 2 different environments

Y. Zhang and L.E. Parker A General IQ Based Approach for Satisfying Sensor Constraints
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Simulation – tracking task

Robots demonstrate similar behaviors.

Our IQ Based Approach [Bandyopadhyay et al., 2006]
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Simulation – tracking task (cont.)

With comparable performance, our approach is more general.

Env. Greedy Approach [Bandyopadhyay et al., 2006] (ICRA)
Total No. Steps No. Steps Visible No. Times Lost (Steps)

Maze 82 74 (90%) 1 (8)
City Blocks 156 131 (84%) 2 (13, 12)

VS.

Env. Our IQ Based Approach
Total No. Steps No. Steps Visible No. Times Lost (Steps)

Maze 114±3.8 108±4.0 (87±2.1%) 1 (14±2.5)
City Blocks 177±4.3 165±5.5 (91±1.5%) 1 (16±2.5))

Y. Zhang and L.E. Parker A General IQ Based Approach for Satisfying Sensor Constraints
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Simulation – navigation task
Robust for different initial configurations.

10 sets of random configurations: x ∈ [−16.0,−12.0], y ∈ [2.0, 3.8], θ ∈ [−60, 60]

Snapshots for running with one of the 10 sets:

0s 8s

18s 26s

Y. Zhang and L.E. Parker A General IQ Based Approach for Satisfying Sensor Constraints
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Physical experiment – tracking task
Performance significantly better than the baseline approach.

Initial VFH Approach
Configurations Total Tracking Time Time in Track Track to Goal

Config. 1 29.7 5.3 (18%) NO
Config. 2 26.5 9.9 (37%) YES
Config. 3 26.6 2.4 (9%) NO
Config. 4 18.7 4.1 (22%) NO
Config. 5 27.2 7.1 (26%) YES

VS.

Initial Our IQ Based Approach
Configurations Total Tracking Time Time in Track Track to Goal

Config. 1 30.1 20.2 (67%) YES
Config. 2 30.4 19.2 (63%) YES
Config. 3 30.0 17.9 (60%) YES
Config. 4 26.9 13.4 (50%) YES
Config. 5 27.5 18.8 (68%) YES

Tracking environment

Y. Zhang and L.E. Parker A General IQ Based Approach for Satisfying Sensor Constraints
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Physical experiment – tracking task (cont.)
More desirable tracking behaviors.

o
VFH Safe Rangery

rx

v

VFH: obstacle is far

o
VFH Safe Rangery

rx

v

VFH: obstacle is near

o
Motion Spacery

rx
Risk Range

v

IQ: obstacle is far

o
Motion Spacery

rx
Risk Range

v

IQ: obstacle is near

Y. Zhang and L.E. Parker A General IQ Based Approach for Satisfying Sensor Constraints
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Physical experiment – navigation task

Act according to different environmental settings.

Navigation I Navigation II

Y. Zhang and L.E. Parker A General IQ Based Approach for Satisfying Sensor Constraints
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Contributions and future work

Local measures of information quality
– enables flexible robot control

Scalable and general

Environment and uncertainty sampling
– incorporates environmental influence and sensor uncertainty

General

Constraint model
– enables dynamic formation control in robot navigation task

Semi-autonomous

Future Work
Implement other multirobot tasks

Incorporate information fusion

Y. Zhang and L.E. Parker A General IQ Based Approach for Satisfying Sensor Constraints
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